Théorie de la plasticité

Théorie de la plasticité

Comprendre la Théorie de la plasticité

Vous êtes ingénieur en génie civil et vous travaillez sur la conception d’une poutre en acier qui doit supporter une charge répartie.

La poutre est en acier structural avec un comportement élastoplastique caractérisé par une limite d’élasticité et une résistance ultime.

Vous devez analyser cette poutre pour déterminer si elle atteindra un état plastique sous une charge donnée et, si oui, quelle est la charge maximale qu’elle peut supporter avant de subir une déformation plastique permanente.

Données

  • Matériau de la poutre: Acier, avec une limite d’élasticité \(\sigma_Y = 250 \, \text{MPa}\) et une résistance ultime \(\sigma_U = 450 \, \text{MPa}\).
  • Dimensions de la poutre: Longueur \(L = 6 \, \text{m}\), section transversale rectangulaire avec largeur \(b = 50 \, \text{mm}\) et hauteur \(h = 150 \, \text{mm}\).
  • Charge: Charge uniformément répartie \(q\) sur toute la longueur de la poutre \( q = 10 \, \text{kN/m} \).

Consignes de l’Exercice

1. Calcul du Moment Fléchissant Maximal \((M\_max)\):
Déterminez le moment fléchissant maximal \(M_{\text{max}}\) dans la poutre sous l’effet de la charge répartie \(q\).

2. État de Contrainte:
Calculer la contrainte maximale \(\sigma_{\text{max}}\) dans la poutre sous l’effet de \(M_{\text{max}}\). Utiliser la formule \(\sigma = \frac{M \cdot y}{I}\), où \(y\) est la distance maximale de l’axe neutre (ici \(\frac{h}{2}\)), et \(I\) est le moment d’inertie de la section (pour une section rectangulaire, \(I = \frac{b \cdot h^3}{12}\)).

3. Analyse de la Plasticité:
Vérifiez si la contrainte maximale atteint la limite d’élasticité. Si oui, déterminez si la poutre entre en phase plastique sous la charge \(q\). Calculez la charge répartie maximale \(q_{\text{max}}\) que la poutre peut supporter sans entrer dans le domaine plastique.

4. Discussion
Discutez des implications si la poutre entre en phase plastique et de l’importance de considérer la limite d’élasticité dans la conception des structures.

Correction : Théorie de la plasticité

Étape 1: Calcul du Moment Fléchissant Maximal \((M_max)\)

Pour une poutre simplement appuyée avec une charge uniformément répartie, le moment fléchissant maximal se produit au milieu de la poutre et est donné par la formule :

\[ M_{\text{max}} = \frac{q \cdot L^2}{8} \]

En substituant \( q = 10 \, \text{kN/m} \) (ou \( 10,000 \, \text{N/m} \)) et \( L = 6 \, \text{m} \), nous obtenons :

\[ M_{\text{max}} = \frac{10,000 \cdot 6^2}{8} \] \[ M_{\text{max}} = \frac{10,000 \cdot 36}{8} \] \[ M_{\text{max}} = 45,000 \, \text{Nm} \]

Étape 2: État de Contrainte

Calculons maintenant la contrainte maximale dans la poutre. La contrainte due à un moment fléchissant est donnée par :

\[ \sigma = \frac{M \cdot y}{I} \]

où \( y = \frac{h}{2} = \frac{150 \, \text{mm}}{2} = 75 \, \text{mm} \) est la distance maximale de l’axe neutre, et le moment d’inertie \( I \) pour une section rectangulaire est \( \frac{b \cdot h^3}{12} \).

Calculons \( I \) :

\[ I = \frac{50 \cdot 150^3}{12} \] \[ I = \frac{50 \cdot 3,375,000}{12} \] \[ I= 14,062,500 \, \text{mm}^4 \]

Convertissant \( I \) en \( \text{m}^4 \) pour cohérence des unités :

\[ I = 14,062,500 \, \text{mm}^4 \] \[ I = 14.0625 \, \text{m}^4 \times 10^{-6} \]

Calculons maintenant \( \sigma_{\text{max}} \) :

\[ \sigma_{\text{max}} = \frac{45,000 \cdot 0.075}{14.0625 \times 10^{-6}} \] \[
\sigma_{\text{max}} = \frac{3,375}{14.0625 \times 10^{-6}} \] \[ \sigma_{\text{max}} = 239,760,000 \, \text{Pa} \] \[ \sigma_{\text{max}} = 239.76 \, \text{MPa} \]

Étape 3: Analyse de la Plasticité

La contrainte maximale est de \( 239.76 \, \text{MPa} \). La limite d’élasticité de l’acier est de \( 250 \, \text{MPa} \). Puisque \( 239.76 \, \text{MPa} < 250 \, \text{MPa} \), la poutre reste dans le domaine élastique sous cette charge et ne subit pas de déformation plastique.

Pour déterminer la charge répartie maximale \( q_{\text{max}} \) sans entrer dans le domaine plastique, nous utilisons la contrainte à la limite élastique :

\[ \sigma_Y = \frac{M_{\text{max}} \cdot y}{I} \] \[ \quad 250 \times 10^6 = \frac{q_{\text{max}} \cdot L^2 \cdot y}{8 \cdot I} \]

Résolvons pour \( q_{\text{max}} \) :

\[ q_{\text{max}} = \frac{250 \times 10^6 \times 8 \times I}{L^2 \times y} \] \[ q_{\text{max}} =\frac{250 \times 10^6 \times 8 \times 14.0625 \times 10^{-6}}{6^2 \times 0.075} \] \[ q_{\text{max}} \approx 10,564 \, \text{N/m} \] \[ q_{\text{max}} \approx 10.564 \, \text{kN/m} \]

Étape 4: Discussion

La charge répartie de \( 10 \, \text{kN/m} \) ne dépasse pas la charge maximale sans plasticité, qui est d’environ \( 10.564 \, \text{kN/m} \).

Par conséquent, la poutre reste dans le domaine élastique sous cette charge. Cela indique que la poutre peut supporter cette charge sans subir de déformation plastique permanente.

Il est crucial de concevoir des structures en tenant compte de la limite d’élasticité pour éviter des défaillances inattendues ou des dommages permanents dans les matériaux de construction.

Théorie de la plasticité

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Analyse de la Contrainte et Déformation

Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous êtes ingénieur civil et vous travaillez sur la conception d'une passerelle piétonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

Analyse des Contraintes par le Cercle de Mohr

Analyse des Contraintes par le Cercle de Mohr Comprendre l'Analyse des Contraintes par le Cercle de Mohr Dans le cadre d’un projet de génie civil, un ingénieur doit analyser les contraintes dans une poutre en béton armé soumise à diverses charges. La section...

Tracé d’Effort Tranchant et du Moment Fléchissant

Tracé d'Effort Tranchant et du Moment Fléchissant Comprendre le Tracé d'Effort Tranchant et du Moment Fléchissant Vous êtes ingénieur en structure et devez analyser une poutre simplement appuyée utilisée dans la construction d'un petit pont piétonnier. Cette poutre...

Résistance des Matériaux Ductiles et Fragiles

Résistance des Matériaux Ductiles et Fragiles Comprendre la Résistance des Matériaux Ductiles et Fragiles Vous êtes ingénieur civil et vous devez analyser la résistance d'une barre en acier (matériau ductile) et d'une barre en céramique (matériau fragile) sous une...

Contrainte de Compression dans un Pilier

Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en béton armé doit être construit pour soutenir une partie d'une structure dans un bâtiment de grande hauteur. Le pilier a une section transversale...

Évaluation de la Capacité de Traction d’une Poutre

Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...

Calcul de la position de l’axe neutre

Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piétonnier. La structure principale du pont est composée de poutres en...

Calcul des déformations dans une poutre

Calcul des déformations dans une poutre Comprendre sur le calcul des déformations dans une  poutre vous allez calculer les déformations dans une poutre en utilisant la théorie de la flexion des poutres. On considère une poutre encastrée à une extrémité et libre à...

Charges, contraintes et déformations

Calculer les charges, contraintes, déformations Comprendre les charges, contraintes et déformations Imaginez une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu'à une...