Analyse des Contraintes par le Cercle de Mohr

Analyse des Contraintes par le Cercle de Mohr

Comprendre l’Analyse des Contraintes par le Cercle de Mohr

Dans le cadre d’un projet de gĂ©nie civil, un ingĂ©nieur doit analyser les contraintes dans une poutre en bĂ©ton armĂ© soumise Ă  diverses charges. La section considĂ©rĂ©e est soumise Ă  des contraintes normales et des contraintes de cisaillement.

Pour Ă©valuer l’Ă©tat de contrainte en un point spĂ©cifique de cette section, l’ingĂ©nieur doit utiliser le cercle de Mohr.

Données:

Les contraintes en un point donné de la poutre sont les suivantes :

  • Contrainte normale dans la direction \( x \) : \(\sigma_x = 30 \, \text{MPa}\)
  • Contrainte normale dans la direction \( y \) : \(\sigma_y = -20 \, \text{MPa}\) (compression)
  • Contrainte de cisaillement dans le plan \( xy \) : \(\tau_{xy} = 15 \, \text{MPa}\)

Questions:

1. Tracer le cercle de Mohr pour les contraintes données.

2. DĂ©terminer les contraintes principales (maximales et minimales).

3. DĂ©terminer les plans principaux (les orientations des plans oĂč les contraintes de cisaillement sont nulles).

4. Calculer la contrainte de cisaillement maximale dans le matériau.

Correction : Analyse des Contraintes par le Cercle de Mohr

1. Tracer le cercle de Mohr pour les contraintes

Calcul du centre et du rayon du cercle de Mohr:

Le centre \( C \) du cercle de Mohr est donné par :

\[ C = \left( \frac{\sigma_x + \sigma_y}{2}, 0 \right) \]

Le rayon \( R \) du cercle de Mohr est :

\[ R = \sqrt{\left( \frac{\sigma_x – \sigma_y}{2} \right)^2 + \tau_{xy}^2} \]

  • Calcul du centre:

\[ C = \left( \frac{30 + (-20)}{2}, 0 \right) \] \[ C = \left( \frac{10}{2}, 0 \right) \] \[ C = (5, 0) \, \text{MPa} \]

  • Calcul du rayon:

\[ R = \sqrt{\left( \frac{30 – (-20)}{2} \right)^2 + 15^2} \] \[ R = \sqrt{\left( \frac{50}{2} \right)^2 + 15^2} \] \[ R = \sqrt{25^2 + 15^2} \] \[ R = \sqrt{625 + 225} = \sqrt{850} \] \[ R \approx 29.15 \, \text{MPa} \]

Tracer le cercle de Mohr

Pour tracer le cercle de Mohr, on place le centre \( C \) Ă  \( (5, 0) \) sur un graphique oĂč l’axe horizontal reprĂ©sente les contraintes normales (\( \sigma \)) et l’axe vertical reprĂ©sente les contraintes de cisaillement (\( \tau \)). Ensuite, on trace un cercle avec ce centre et un rayon de \( 29.15 \, \text{MPa} \).

Analyse des Contraintes par le Cercle de Mohr

2. DĂ©termination des contraintes principales

Les contraintes principales (\( \sigma_1 \) et \( \sigma_2 \)) sont les points oĂč le cercle coupe l’axe des contraintes normales :

\[ \sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left( \frac{\sigma_x – \sigma_y}{2} \right)^2 + \tau_{xy}^2} \]

Calcul des contraintes principales:

\[ \sigma_1 = 5 + 29.15 = 34.15 \, \text{MPa} \]

\[ \sigma_2 = 5 – 29.15 = -24.15 \, \text{MPa} \]

3. DĂ©termination des orientations des plans principaux

L’angle \( \theta_p \) des plans principaux par rapport Ă  la direction x est donnĂ© par :

\[ \tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x – \sigma_y} \]

Calcul de l’angle des plans principaux:

\[ \tan(2\theta_p) = \frac{2 \times 15}{30 – (-20)} = \frac{30}{50} = 0.6 \] \[ 2\theta_p = \tan^{-1}(0.6) \approx 31^\circ \] \[ \theta_p \approx 15.5^\circ \]

4. Calcul de la contrainte de cisaillement maximale

La contrainte de cisaillement maximale \( \tau_{\text{max}} \) est Ă©gale au rayon du cercle de Mohr :

\[ \tau_{\text{max}} = R \approx 29.15 \, \text{MPa} \]

Conclusion:

  • Les contraintes principales sont \( \sigma_1 = 34.15 \, \text{MPa} \) et \( \sigma_2 = -24.15 \, \text{MPa} \).
  • Les plans principaux sont orientĂ©s Ă  \( \theta_p \approx 15.5^\circ \) par rapport Ă  la direction x.
  • La contrainte de cisaillement maximale dans la poutre est \( \tau_{\text{max}} \approx 29.15 \, \text{MPa} \).

Analyse des Contraintes par le Cercle de Mohr

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’amĂ©liorer la qualitĂ© et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathĂ©matique, ou si vous avez des retours Ă  partager, n’hĂ©sitez pas Ă  nous en informer. Votre aide est prĂ©cieuse pour perfectionner nos ressources. Merci de contribuer Ă  notre communautĂ© !

Cordialement, EGC – GĂ©nie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Analyse de la Contrainte et DĂ©formation

Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous ĂȘtes ingĂ©nieur civil et vous travaillez sur la conception d'une passerelle piĂ©tonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

TracĂ© d’Effort Tranchant et du Moment FlĂ©chissant

TracĂ© d'Effort Tranchant et du Moment FlĂ©chissant Comprendre le TracĂ© d'Effort Tranchant et du Moment FlĂ©chissant Vous ĂȘtes ingĂ©nieur en structure et devez analyser une poutre simplement appuyĂ©e utilisĂ©e dans la construction d'un petit pont piĂ©tonnier. Cette poutre...

Résistance des Matériaux Ductiles et Fragiles

RĂ©sistance des MatĂ©riaux Ductiles et Fragiles Comprendre la RĂ©sistance des MatĂ©riaux Ductiles et Fragiles Vous ĂȘtes ingĂ©nieur civil et vous devez analyser la rĂ©sistance d'une barre en acier (matĂ©riau ductile) et d'une barre en cĂ©ramique (matĂ©riau fragile) sous une...

Contrainte de Compression dans un Pilier

Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en bĂ©ton armĂ© doit ĂȘtre construit pour soutenir une partie d'une structure dans un bĂątiment de grande hauteur. Le pilier a une section transversale...

Évaluation de la CapacitĂ© de Traction d’une Poutre

Évaluation de la CapacitĂ© de Traction d'une Poutre Comprendre l'Évaluation de la CapacitĂ© de Traction d'une Poutre Un ingĂ©nieur en gĂ©nie civil doit concevoir une poutre en acier pour supporter une charge uniformĂ©ment rĂ©partie, incluant son propre poids, sur une portĂ©e...

Calcul de la position de l’axe neutre

Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous ĂȘtes ingĂ©nieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piĂ©tonnier. La structure principale du pont est composĂ©e de poutres en...

Calcul des déformations dans une poutre

Calcul des déformations dans une poutre Comprendre sur le calcul des déformations dans une  poutre vous allez calculer les déformations dans une poutre en utilisant la théorie de la flexion des poutres. On considÚre une poutre encastrée à une extrémité et libre à...

Charges, contraintes et déformations

Calculer les charges, contraintes, déformations Comprendre les charges, contraintes et déformations Imaginez une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu'à une...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous ĂȘtes un ingĂ©nieur en gĂ©nie civil travaillant sur la conception d'un pont suspendu. Un des Ă©lĂ©ments clĂ©s de votre conception est le tirant qui soutient le tablier du pont....