Analyse des Contraintes par le Cercle de Mohr

Analyse des Contraintes par le Cercle de Mohr

Comprendre l’Analyse des Contraintes par le Cercle de Mohr

Dans le cadre d’un projet de génie civil, un ingénieur doit analyser les contraintes dans une poutre en béton armé soumise à diverses charges. La section considérée est soumise à des contraintes normales et des contraintes de cisaillement.

Pour Ă©valuer l’Ă©tat de contrainte en un point spĂ©cifique de cette section, l’ingĂ©nieur doit utiliser le cercle de Mohr.

Creation de Cercle de Mohr : Exercice – Corrigé, cliquez sur le lien.

Données:

Les contraintes en un point donné de la poutre sont les suivantes :

  • Contrainte normale dans la direction \( x \) : \(\sigma_x = 30 \, \text{MPa}\)
  • Contrainte normale dans la direction \( y \) : \(\sigma_y = -20 \, \text{MPa}\) (compression)
  • Contrainte de cisaillement dans le plan \( xy \) : \(\tau_{xy} = 15 \, \text{MPa}\)

Questions:

1. Tracer le cercle de Mohr pour les contraintes données.

2. DĂ©terminer les contraintes principales (maximales et minimales).

3. DĂ©terminer les plans principaux (les orientations des plans oĂą les contraintes de cisaillement sont nulles).

4. Calculer la contrainte de cisaillement maximale dans le matériau.

Correction : Analyse des Contraintes par le Cercle de Mohr

1. Tracer le cercle de Mohr pour les contraintes

Calcul du centre et du rayon du cercle de Mohr:

Le centre \( C \) du cercle de Mohr est donné par :

\[ C = \left( \frac{\sigma_x + \sigma_y}{2}, 0 \right) \]

Le rayon \( R \) du cercle de Mohr est :

\[ R = \sqrt{\left( \frac{\sigma_x – \sigma_y}{2} \right)^2 + \tau_{xy}^2} \]

  • Calcul du centre:

\[ C = \left( \frac{30 + (-20)}{2}, 0 \right) \] \[ C = \left( \frac{10}{2}, 0 \right) \] \[ C = (5, 0) \, \text{MPa} \]

  • Calcul du rayon:

\[ R = \sqrt{\left( \frac{30 – (-20)}{2} \right)^2 + 15^2} \] \[ R = \sqrt{\left( \frac{50}{2} \right)^2 + 15^2} \] \[ R = \sqrt{25^2 + 15^2} \] \[ R = \sqrt{625 + 225} = \sqrt{850} \] \[ R \approx 29.15 \, \text{MPa} \]

Tracer le cercle de Mohr

Pour tracer le cercle de Mohr, on place le centre \( C \) Ă  \( (5, 0) \) sur un graphique oĂą l’axe horizontal reprĂ©sente les contraintes normales (\( \sigma \)) et l’axe vertical reprĂ©sente les contraintes de cisaillement (\( \tau \)). Ensuite, on trace un cercle avec ce centre et un rayon de \( 29.15 \, \text{MPa} \).

Analyse des Contraintes par le Cercle de Mohr

2. DĂ©termination des contraintes principales

Les contraintes principales (\( \sigma_1 \) et \( \sigma_2 \)) sont les points oĂą le cercle coupe l’axe des contraintes normales :

\[ \sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left( \frac{\sigma_x – \sigma_y}{2} \right)^2 + \tau_{xy}^2} \]

Calcul des contraintes principales:

\[ \sigma_1 = 5 + 29.15 = 34.15 \, \text{MPa} \]

\[ \sigma_2 = 5 – 29.15 = -24.15 \, \text{MPa} \]

3. DĂ©termination des orientations des plans principaux

L’angle \( \theta_p \) des plans principaux par rapport à la direction x est donné par :

\[ \tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x – \sigma_y} \]

Calcul de l’angle des plans principaux:

\[ \tan(2\theta_p) = \frac{2 \times 15}{30 – (-20)} = \frac{30}{50} = 0.6 \] \[ 2\theta_p = \tan^{-1}(0.6) \approx 31^\circ \] \[ \theta_p \approx 15.5^\circ \]

4. Calcul de la contrainte de cisaillement maximale

La contrainte de cisaillement maximale \( \tau_{\text{max}} \) est Ă©gale au rayon du cercle de Mohr :

\[ \tau_{\text{max}} = R \approx 29.15 \, \text{MPa} \]

Conclusion:

  • Les contraintes principales sont \( \sigma_1 = 34.15 \, \text{MPa} \) et \( \sigma_2 = -24.15 \, \text{MPa} \).
  • Les plans principaux sont orientĂ©s Ă  \( \theta_p \approx 15.5^\circ \) par rapport Ă  la direction x.
  • La contrainte de cisaillement maximale dans la poutre est \( \tau_{\text{max}} \approx 29.15 \, \text{MPa} \).

Analyse des Contraintes par le Cercle de Mohr

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’amĂ©liorer la qualitĂ© et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathĂ©matique, ou si vous avez des retours Ă  partager, n’hĂ©sitez pas Ă  nous en informer. Votre aide est prĂ©cieuse pour perfectionner nos ressources. Merci de contribuer Ă  notre communautĂ© !

Cordialement, EGC – GĂ©nie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Facteur de Sécurité

Calcul du Facteur de Sécurité d’une Poutre Comprendre le calcul du facteur de sécurité d'une poutre Vous êtes ingénieur en structure et devez vérifier la sécurité d'une poutre en acier dans une construction. Le but de cet exercice est de déterminer le facteur de...

Déformation Axiale Due à la Température

Déformation Axiale Due à la Température Comprendre la Déformation Axiale Due à la Température Un ingénieur civil doit concevoir un pylône de transmission électrique qui traverse une région soumise à des variations de température extrêmes. Le pylône est constitué d'une...

Contrainte et Raccourcissement dans une Poutre

Contrainte et Raccourcissement dans une Poutre Comprendre la Contrainte et Raccourcissement dans une Poutre Vous êtes ingénieur dans une entreprise de construction et vous devez analyser l'intégrité structurelle d'une poutre utilisée dans la construction d'un pont. La...

Analyse de la Contrainte et DĂ©formation

Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous êtes ingénieur civil et vous travaillez sur la conception d'une passerelle piétonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

TracĂ© d’Effort Tranchant et du Moment FlĂ©chissant

Tracé d'Effort Tranchant et du Moment Fléchissant Comprendre le Tracé d'Effort Tranchant et du Moment Fléchissant Vous êtes ingénieur en structure et devez analyser une poutre simplement appuyée utilisée dans la construction d'un petit pont piétonnier. Cette poutre...

Résistance des Matériaux Ductiles et Fragiles

Résistance des Matériaux Ductiles et Fragiles Comprendre la Résistance des Matériaux Ductiles et Fragiles Vous êtes ingénieur civil et vous devez analyser la résistance d'une barre en acier (matériau ductile) et d'une barre en céramique (matériau fragile) sous une...

Contrainte de Compression dans un Pilier

Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en béton armé doit être construit pour soutenir une partie d'une structure dans un bâtiment de grande hauteur. Le pilier a une section transversale...

Évaluation de la CapacitĂ© de Traction d’une Poutre

Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...

Calcul de la position de l’axe neutre

Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piétonnier. La structure principale du pont est composée de poutres en...