Calcul de la position de l’axe neutre

Calcul de la position de l’axe neutre

Comprendre le Calcul de la position de l’axe neutre

Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d’un pont piétonnier. La structure principale du pont est composée de poutres en acier disposées à intervalles réguliers.

Pour assurer la sécurité et la durabilité du pont, il est crucial de comprendre comment ces poutres se comportent sous charge, notamment en ce qui concerne la position de l’axe neutre lorsqu’elles sont soumises à de la flexion.

Comprendre le Comportement d’un Matériau sous Charge, cliquez sur le lien.

Données:

  • Matériau de la poutre : acier avec un module d’élasticité \(E = 210 \times 10^9 \, \text{Pa}\).
  • Section transversale de la poutre : rectangle de hauteur \(h = 300 \, \text{mm}\) et de largeur \(b = 150 \, \text{mm}\).
  • Longueur de la poutre : \(L = 5 \, \text{m}\).
  • La poutre est simplement appuyée aux deux extrémités et soumise à une charge uniformément répartie \(q = 5 \, \text{kN/m}\).

Objectif:
Déterminer la position de l’axe neutre dans la section transversale de la poutre en flexion.

Questions:

1. Calculer le moment fléchissant maximal \(M\) dans la poutre.

2. En utilisant la théorie de la flexion simple, déterminer la contrainte maximale dans la poutre.

3. Calculer la position de l’axe neutre par rapport au bord inférieur de la section transversale.

Correction : Calcul de la position de l’axe neutre

1. Calcul du moment fléchissant maximal \(M\)

Le moment fléchissant maximal dans une poutre simplement appuyée sous charge uniformément répartie est donné par la formule :

\[ M = \frac{qL^2}{8} \]

En substituant les valeurs données :

\[ M = \frac{5 \times (5)^2}{8} \] \[ M = 15,625 \, \text{kNm} \]

2. Moment d’inertie \(I\) de la section transversale

Le moment d’inertie pour une section rectangulaire est calculé par :

\[ I = \frac{bh^3}{12} \]

En substituant les valeurs données :

\[ I = \frac{0.150 \times (0.300)^3}{12} \] \[ I = 0.0003375 \, \text{m}^4 \]

3. Position de l’axe neutre

L’axe neutre passe par le centre de gravité de la section transversale. Pour une section rectangulaire, le centre de gravité (et donc l’axe neutre) est situé à \(h/2\) du bord supérieur ou inférieur.

Dans notre cas, la hauteur \(h\) de la section transversale est de 300 mm, donc la position de l’axe neutre par rapport au bord inférieur est :

\[ h/2 = 300/2 = 150 \, \text{mm} \]

Résumé des résultats:

  • Le moment fléchissant maximal \(M\) est de 15,625 kNm.
  • Le moment d’inertie \(I\) de la section transversale est de \(0.0003375 \, \text{m}^4\).
  • La position de l’axe neutre par rapport au bord inférieur est de 150 mm (ou 0.15 m).

Calcul de la position de l’axe neutre

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de l’axe neutre en RDM

CALCUL DE L’AXE NEUTRE EN RDM Comprendre le calcul de l'axe neutre en rdm Vous êtes un ingénieur en structure chargé de concevoir un pont en poutre. Pour garantir la sécurité et l'efficacité de la structure, il est crucial de déterminer la position de l'axe neutre de...

Calcul des réactions d’appui

Calcul des réactions d'appui Comprendre le calcul des réactions d'appui Vous êtes un ingénieur chargé de concevoir un pont pour une nouvelle route. Le pont doit être capable de supporter une charge uniformément répartie ainsi que des charges concentrées dues à des...

Module d’Élasticité et de Résistance sous Charge

Module d'Élasticité et de Résistance sous Charge Comprendre le calcul module d'Élasticité et de Résistance sous Charge Vous êtes un ingénieur travaillant sur la conception d'une passerelle piétonne. Cette passerelle doit être construite en acier et être capable de...

Calcul de la contrainte tangentielle

Calcul de la contrainte tangentielle Comprendre le calcul de la contrainte tangentielle Une poutre en acier, encastrée à une extrémité, est soumise à un chargement uniformément réparti le long de sa longueur. Longueur de la poutre (L) : 6 mètres. Largeur de la poutre...

Contraintes en fibres extrêmes et intermédiaires

Contraintes en fibres extrêmes et intermédiaires Comprendre la contraintes en fibres extrêmes et intermédiaires Vous êtes ingénieur en structure et devez analyser une poutre en acier soumise à une charge uniformément répartie. La poutre a une section transversale...

Calcul des Contraintes Principales

Calcul des Contraintes Principales Comprendre le calcul des Contraintes Principales Dans un projet de construction d'un pont, les ingénieurs doivent évaluer la sécurité de la structure sous différentes charges. Un élément structurel clé, une poutre en acier, est...

Cisaillement dans une poutre

Cisaillement dans une poutre Comprendre le cisaillement dans une poutre Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées. L'objectif est de...

Comportement plastique et la rupture

Comportement plastique et la rupture Comprendre le comportement plastique et la rupture Un ingénieur conçoit une poutre en acier pour supporter une charge dans une construction industrielle. L'acier a un comportement élastoplastique et l'ingénieur doit s'assurer que...

La loi de Hooke calcul

La loi de Hooke Exercice corrigé Comprendre le calcul selon la loi de Hooke Dans un laboratoire de mécanique, un ingénieur teste la résilience d'un ressort en acier. Il souhaite comprendre comment le ressort réagit sous différentes charges et jusqu'à quel point il...

Comportement d’un Matériau sous Charge

Comportement d'un Matériau sous Charge Comprendre le comportement d'un Matériau sous Charge Un barreau en acier (considéré comme un matériau isotrope et homogène) de longueur initiale \(L_0\) et de diamètre \(d_0\) est soumis à une charge de traction axiale. Pour...