Calcul de flèche d’une poutre

Calcul de flèche d’une poutre

Comprendre le calcul de fleche d’une poutre

Dans une entreprise de construction, vous êtes chargé de vérifier la résistance d’une poutre en acier utilisée dans la structure d’un petit pont piétonnier.

Données fournies :

  • Matériau de la poutre : Acier, avec un module d’élasticité \(E = 210\, \text{GPa}\).
  • Dimensions de la poutre : Longueur \(L = 6\, \text{m}\), largeur de la section transversale \(b = 150\, \text{mm}\), hauteur de la section transversale \(h = 300\, \text{mm}\).
  • Charge uniformément répartie : \(q = 5\, \text{kN/m}\).

Pour comprendre le calcul du Déplacement de l’Extrémité Libre d’une poutre, cliquez sur le lien.

Questions :

1. Calculez le moment d’inertie \(I\) de la section transversale de la poutre.
2. Déterminez la flèche maximale \(\delta_{\text{max}}\) de la poutre sous l’effet de la charge répartie.
3. Évaluez si la flèche calculée est acceptable selon les normes de construction habituelles (par exemple, la flèche ne doit pas dépasser \(L/360\))

Correction : calcul de fleche d’une poutre

1. Calcul du Moment d’Inertie (I)

Le moment d’inertie pour une section rectangulaire est donné par la formule :

\[ I = \frac{b \cdot h^3}{12} \]

où \( b \) est la largeur de la section transversale et \( h \) est la hauteur. En remplaçant par les valeurs données :

  • \(b = 150\, \text{mm} = 0.15\, \text{m} \quad \text{(conversion en mètres)}\)
  • \(h = 300\, \text{mm} = 0.3\, \text{m}\)

\[ I = \frac{0.15 \times (0.3)^3}{12} \] \[ I = \frac{0.15 \times 0.027}{12} \] \[ I = 3.375 \times 10^{-4}\, \text{m}^4
\]

2. Détermination de la Flèche Maximale (\(\delta_{\text{max}}\))

La flèche maximale pour une charge uniformément répartie sur une poutre simplement appuyée aux deux extrémités:

\[ \delta_{\text{max}} = \frac{5 \cdot q \cdot L^4}{384 \cdot E \cdot I}
\]

En remplaçant par les valeurs données et calculées :

  • \(q = 5\, \text{kN/m} = 5000\, \text{N/m} \quad \text{(conversion en Newtons)}\)
  • \(L = 6\, \text{m}\)
  • \(E = 210\, \text{GPa} = 210 \times 10^9\, \text{Pa} \quad \text{(conversion en Pascals)}\)
  • \(I = 3.375 \times 10^{-4}\, \text{m}^4 \quad \text{(déjà calculé)}\)

\[ \delta_{\text{max}} = \frac{5 \times 5000 \times 6^4}{384 \times 210 \times 10^9 \times 3.375 \times 10^{-4}} \] \[ \delta_{\text{max}} = \frac{5 \times 5000 \times 1296}{384 \times 210 \times 10^9 \times 3.375 \times 10^{-4}} \] \[ \delta_{\text{max}} = \frac{32400000}{26956800000} \] \[ \delta_{\text{max}} = 1.202 \times 10^{-3}\, \text{m} \] \[ \delta_{\text{max}} = 1.202\, \text{mm} \]

3. Évaluation de l’Acceptabilité de la Flèche

Les normes de construction habituelles stipulent que la flèche ne doit pas dépasser \( L/360 \). Pour une longueur de \( 6\, \text{m} \) :

\[ \frac{L}{360} = \frac{6}{360} = 0.0167\, \text{m} \] \[ = 16.7\, \text{mm} \]

La flèche calculée \(\delta_{\text{max}} = 1.202\, \text{mm}\) est donc largement inférieure à la limite acceptée de \( 16.7\, \text{mm} \).

Par conséquent, la flèche de la poutre est acceptable selon les normes de construction.

Calcul de fleche d’une poutre

D’autres exercices de Rdm :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

5 Commentaires

  1. Benoni bumbangi

    Comment calculer la flèche d’une poutre encastré a un seul extrémité avec une charge uniformément repartir ( matériaux : acier )

    Réponse
  2. Libère

    Bonjour,
    I me semble que la formule indiquée est pour le calcul de la flèche d’une poutre simplement appuyée. Pour une poutre encastrée aux 2 extrémités, c’est la même formule mais sans le 5. En effet, l’encastrement empêche la rotation de la poutre sous charge, ce qui en réduit d’autant la flèche.

    Réponse
    • EGC - Génie Civil

      Merci pour le commentaire,
      Dans le cas de notre exercice la flèche maximale calculée est pour une charge uniformément répartie sur une poutre simplement appuyée aux deux extrémités, il y avait effectivement une erreur dans l’écriture mais c’est réglé !!!

      Réponse

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Étude des Forces dans les Barres d’une Structure

Étude des Forces dans les Barres d'une Structure Comprendre l'Étude des Forces dans les Barres d'une Structure Dans le cadre d'une mission d'ingénierie civile, vous êtes chargé de vérifier la stabilité d'une structure temporaire utilisée lors d'un événement en plein...

Calcul du Degré d’Hyperstaticité

Calcul du Degré d’Hyperstaticité Comprendre le Calcul du Degré d’Hyperstaticité Un ingénieur civil est chargé de concevoir un pont en poutre simplement supporté, mais décide d'ajouter des appuis supplémentaires pour augmenter la stabilité du pont. Le pont est...

Calcul du Moment Quadratique d’une Poutre

Calcul du Moment Quadratique d'une Poutre Comprendre le Calcul du Moment Quadratique d'une Poutre Une entreprise de construction doit installer une poutre en acier pour soutenir une partie du toit d'un petit entrepôt. La poutre, de forme rectangulaire, est positionnée...

Calcul du Rayon de Giration

Calcul du Rayon de Giration Comprendre le Calcul du Rayon de Giration Dans le cadre de la conception d'un pont piétonnier, il est essentiel d'analyser la stabilité des piliers en acier qui soutiendront le tablier. Le calcul du rayon de giration des sections...

Caractéristiques Géométriques de Sections

Caractéristiques Géométriques de Sections Comprendre le calcul des Caractéristiques Géométriques de Sections Dans le cadre de la conception d'une poutre pour un pont piétonnier, il est nécessaire de déterminer les caractéristiques géométriques de la section...

Calcul du Centre de Gravité d’une Poutre

Calcul du Centre de Gravité d'une Poutre Comprendre le Calcul du Centre de Gravité d'une Poutre Dans le cadre de la conception d'une structure métallique légère pour une nouvelle installation sportive, un ingénieur doit déterminer le centre de gravité d'une poutre en...

Calcul de la Flèche en Mi-Travée d’une Poutre

Calcul de la Flèche en Mi-Travée d'une Poutre Comprendre le Calcul de la Flèche en Mi-Travée d'une Poutre Une poutre en acier, simplement appuyée aux deux extrémités, est soumise à une charge uniformément répartie. L'objectif est de calculer la flèche maximale à...

Calcul de l’effort tranchant dans une poutre

Calcul de l'effort tranchant dans une poutre Comprendre le Calcul de l'effort tranchant dans une poutre Vous êtes un ingénieur en charge de la conception d'un pont destiné à un trafic léger dans une zone urbaine. Vous devez vérifier la capacité d'une poutre du pont à...

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Calcul du Facteur de Sécurité

Calcul du Facteur de Sécurité d’une Poutre Comprendre le calcul du facteur de sécurité d'une poutre Vous êtes ingénieur en structure et devez vérifier la sécurité d'une poutre en acier dans une construction. Le but de cet exercice est de déterminer le facteur de...