Détermination du Module d’Young

Détermination du Module d’Young

Comprendre la Détermination du Module d’Young

Vous êtes ingénieur dans une entreprise de construction et vous devez vérifier la rigidité d’une poutre en acier avant de l’intégrer dans la structure d’un bâtiment.

Pour cela, vous décidez de calculer le module d’Young de l’acier à partir d’un essai de traction.

Pour comprendre l’Évaluation de la Capacité de Traction d’une Poutre, cliquez sur le lien.

Données fournies:

  • Longueur initiale de la poutre en acier, L = 3 m
  • Section transversale rectangulaire avec une largeur b = 40 mm et une hauteur h = 20 mm
  • Force de traction appliquée, F = 10000 N
  • Allongement mesuré de la poutre suite à l’application de la force, \(\Delta L = 2\) mm

Tâches:

1. Calcul de l’aire de la section transversale (A)

2. Calcul de la contrainte (\(\sigma\)) dans la poutre

3. Calcul de la déformation unitaire (\(\epsilon\))

4. Calcul du module d’Young (E) de l’acier

5. Comparaison avec les valeurs typiques pour l’acier

  • Les valeurs typiques du module d’Young pour l’acier varient entre 200 et 210 GPa. Comparez votre résultat à cette plage pour vérifier sa cohérence.

Correction : Détermination du Module d’Young

1. Calcul de l’aire de la section transversale (A)

Les dimensions de la section transversale doivent être converties en mètres pour être cohérentes avec les unités SI.

  • b = 40 mm = 0.04 m
  • h = 20 mm = 0.02 m

L’aire A est donc :

\[ A = b \times h \] \[ A = 0.04 \, \text{m} \times 0.02 \, \text{m} \] \[ A = 0.0008 \, \text{m}^2 \]

2. Calcul de la contrainte (\(\sigma\)) dans la poutre

La contrainte est la force par unité de surface.

\[ \sigma = \frac{F}{A} = \frac{10000 \, \text{N}}{0.0008 \, \text{m}^2} \] \[ \sigma = 12500000 \, \text{Pa} \] \[ A = 12.5 \, \text{MPa} \]

3. Calcul de la déformation unitaire (\(\epsilon\))

La déformation unitaire est le rapport de l’allongement à la longueur initiale.

\[ \Delta L = 2 \, \text{mm} = 0.002 \, \text{m} \]

\[ \epsilon = \frac{\Delta L}{L} = \frac{0.002 \, \text{m}}{3 \, \text{m}} \] \[ \epsilon = 0.000667 \]

4. Calcul du Module d’Young (E)

Le module d’Young est calculé par le rapport de la contrainte à la déformation unitaire :

\[ E = \frac{\sigma}{\epsilon} \] \[ E = \frac{12.5 \, \text{MPa}}{0.000667} \] \[ E = 18,750 \, \text{MPa} \] \[ E = 18.75 \, \text{GPa} \]

5. Comparaison avec les valeurs typiques pour l’acier

Le module d’Young calculé de \( 18.75 \, \text{GPa} \) est significativement inférieur à la plage typique pour l’acier, qui varie entre \( 200 \, \text{GPa} \) et \( 210 \, \text{GPa} \). Cette valeur indique une probable erreur dans les mesures ou les hypothèses de calcul. Il serait prudent de revoir les conditions de l’expérience ou de réaliser des mesures supplémentaires pour clarifier cette divergence.

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

2 Commentaires

  1. Frédéric

    Bonjour
    Merci pour ce site et pour votre travail
    Je comprends votre calcul de la déformation unitaire.
    Par contre, lors du calcul de la contrainte, vous divisez des MPa par ce nombre sans dimension pour obtenir des Pa (première incompréhension pour moi). Ensuite, vous convertissez ces Pa en GPa (mais je compte un rapport de 1E6 et non de 1E5).
    Pourriez-vous m’indiquer où je me trompe?
    Merci d’avance
    Frédéric

    Réponse
    • EGC - Génie Civil

      Bonjour Frédéric,

      Merci pour votre commentaire. Vous avez raison, il y avait une erreur dans la conversion des unités pour le calcul du module d’Young. Après correction, le module d’Young est bien de 18.75 GPa, ce qui est effectivement beaucoup plus bas que la plage typique pour l’acier (200-210 GPa). Cette différence pourrait être due à des hypothèses de données ou des erreurs de mesure. Merci beaucoup de votre vigilance !

      Réponse

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de l’axe neutre en RDM

CALCUL DE L’AXE NEUTRE EN RDM Comprendre le calcul de l'axe neutre en rdm Vous êtes un ingénieur en structure chargé de concevoir un pont en poutre. Pour garantir la sécurité et l'efficacité de la structure, il est crucial de déterminer la position de l'axe neutre de...

Calcul des réactions d’appui

Calcul des réactions d'appui Comprendre le calcul des réactions d'appui Vous êtes un ingénieur chargé de concevoir un pont pour une nouvelle route. Le pont doit être capable de supporter une charge uniformément répartie ainsi que des charges concentrées dues à des...

Module d’Élasticité et de Résistance sous Charge

Module d'Élasticité et de Résistance sous Charge Comprendre le calcul module d'Élasticité et de Résistance sous Charge Vous êtes un ingénieur travaillant sur la conception d'une passerelle piétonne. Cette passerelle doit être construite en acier et être capable de...

Calcul de la contrainte tangentielle

Calcul de la contrainte tangentielle Comprendre le calcul de la contrainte tangentielle Une poutre en acier, encastrée à une extrémité, est soumise à un chargement uniformément réparti le long de sa longueur. Longueur de la poutre (L) : 6 mètres. Largeur de la poutre...

Contraintes en fibres extrêmes et intermédiaires

Contraintes en fibres extrêmes et intermédiaires Comprendre la contraintes en fibres extrêmes et intermédiaires Vous êtes ingénieur en structure et devez analyser une poutre en acier soumise à une charge uniformément répartie. La poutre a une section transversale...

Calcul des Contraintes Principales

Calcul des Contraintes Principales Comprendre le calcul des Contraintes Principales Dans un projet de construction d'un pont, les ingénieurs doivent évaluer la sécurité de la structure sous différentes charges. Un élément structurel clé, une poutre en acier, est...

Cisaillement dans une poutre

Cisaillement dans une poutre Comprendre le cisaillement dans une poutre Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées. L'objectif est de...

Comportement plastique et la rupture

Comportement plastique et la rupture Comprendre le comportement plastique et la rupture Un ingénieur conçoit une poutre en acier pour supporter une charge dans une construction industrielle. L'acier a un comportement élastoplastique et l'ingénieur doit s'assurer que...

La loi de Hooke calcul

La loi de Hooke Exercice corrigé Comprendre le calcul selon la loi de Hooke Dans un laboratoire de mécanique, un ingénieur teste la résilience d'un ressort en acier. Il souhaite comprendre comment le ressort réagit sous différentes charges et jusqu'à quel point il...

Comportement d’un Matériau sous Charge

Comportement d'un Matériau sous Charge Comprendre le comportement d'un Matériau sous Charge Un barreau en acier (considéré comme un matériau isotrope et homogène) de longueur initiale \(L_0\) et de diamètre \(d_0\) est soumis à une charge de traction axiale. Pour...