Contraintes et déformations en traction

Contraintes et déformations en traction

Comprendre le calcul des contraintes et déformations en traction :

Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes :

  • Diamètre initial de la barre (D₀) = 12 mm
  • Longueur initiale de la barre (L₀) = 2 m
  • Module d’élasticité du matériau (E) = 210 GPa
  • Limite d’élasticité du matériau (σy) = 250 MPa
  • Charge appliquée (F) = 30 kN

Questions :

  1. Calcul de la contrainte initiale : Calculez la contrainte initiale (σ) dans la barre. La contrainte est définie par σ = F / A, où A est l’aire de la section transversale de la barre.
  2. Détermination de la déformation : Déterminez si la barre se déforme de manière élastique ou plastique. Utilisez la contrainte calculée dans la question 1 et comparez-la avec la limite d’élasticité du matériau.
  3. Calcul de la déformation élastique : Si la déformation est élastique, calculez l’allongement (ΔL) de la barre. Utilisez la loi de Hooke (ΔL = (F * L₀) / (A * E)) pour ce calcul.
  4. Calcul de la nouvelle longueur : En supposant que la déformation est élastique, calculez la nouvelle longueur de la barre.
  5. Discussion sur la déformation plastique : Si la contrainte dépasse la limite d’élasticité, discutez brièvement des conséquences potentielles sur la barre en termes de déformation plastique.

Données supplémentaires pour les calculs :

  • Utilisez π = 3.14 pour les calculs impliquant des sections circulaires.
  • Convertissez toutes les unités en mètres, mètres carrés, Newtons et Pascals pour uniformiser les calculs.

Correction : Contraintes et déformations en traction

1. Calcul de la contrainte initiale (\(\sigma\))

La contrainte est définie par la formule : \[\sigma = \frac{F}{A},\] où \(F\) est la force appliquée et \(A\) est l’aire de la section transversale.

  • Diamètre de la barre, \(D_0 = 12\) mm \(= 0.012\) m (conversion en mètres).
  • Aire de la section transversale, \(A = \pi \times \left(\frac{D_0}{2}\right)^2 = \pi \times (0.006)^2\) m\(^2\).
  • Force appliquée, \(F = 30\) kN \(= 30000\) N (conversion en Newtons).

Calcul de \(A\):

\[A = \pi \times (0.006)^2 \] \[A \approx 0.0001131 \text{ m}^2.\]

Calcul de \(\sigma\):

\[\sigma = \frac{30000}{0.0001131} \] \[\sigma \approx 265275855 \text{ Pa} \text{ ou } 265 \text{ MPa}.\]

2. Détermination de la déformation

La contrainte calculée est \(265\) MPa. La limite d’élasticité du matériau est \(250\) MPa. Puisque \(265\) MPa \(>\) \(250\) MPa, la barre subit une déformation plastique.

3. Calcul de la déformation élastique

Dans ce cas, puisque la barre se déforme de manière plastique, nous ne pouvons pas appliquer directement la loi de Hooke pour calculer l’allongement élastique.

Cependant, pour l’exercice, si nous avions supposé une déformation élastique, l’allongement pourrait être calculé comme suit :

\[\Delta L = \frac{F \times L_0}{A \times E}.\]

  • Longueur initiale, \(L_0 = 2\) m.
  • Module d’élasticité, \(E = 210\) GPa \(= 210 \times 10^9\) Pa.

Calcul de \(\Delta L\) (pour une déformation hypothétiquement élastique) :

\[\Delta L = \frac{30000 \times 2}{0.0001131 \times 210 \times 10^9} \] \[\Delta L \approx 0.0025 \text{ m ou } 2.5 \text{ mm}.\]

4. Calcul de la nouvelle longueur

Encore une fois, pour une déformation élastique hypothétique :

  • Nouvelle longueur

\[L = L_0 + \Delta L\] \[L = 2 + 0.0025 = 2.0025\, \text{m}\]

5. Discussion sur la déformation plastique

Puisque la contrainte dépasse la limite d’élasticité, la barre subit une déformation plastique. Cela signifie que même si la force est retirée, la barre ne reviendra pas à sa longueur originale.

La déformation plastique est permanente et peut altérer les propriétés mécaniques de la barre, affectant potentiellement sa résistance, sa ductilité et sa capacité à supporter des charges futures.

Contraintes et déformations en traction

D’autres exercices de Rdm :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Analyse de la Contrainte et Déformation

Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous êtes ingénieur civil et vous travaillez sur la conception d'une passerelle piétonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

Analyse des Contraintes par le Cercle de Mohr

Analyse des Contraintes par le Cercle de Mohr Comprendre l'Analyse des Contraintes par le Cercle de Mohr Dans le cadre d’un projet de génie civil, un ingénieur doit analyser les contraintes dans une poutre en béton armé soumise à diverses charges. La section...

Tracé d’Effort Tranchant et du Moment Fléchissant

Tracé d'Effort Tranchant et du Moment Fléchissant Comprendre le Tracé d'Effort Tranchant et du Moment Fléchissant Vous êtes ingénieur en structure et devez analyser une poutre simplement appuyée utilisée dans la construction d'un petit pont piétonnier. Cette poutre...

Résistance des Matériaux Ductiles et Fragiles

Résistance des Matériaux Ductiles et Fragiles Comprendre la Résistance des Matériaux Ductiles et Fragiles Vous êtes ingénieur civil et vous devez analyser la résistance d'une barre en acier (matériau ductile) et d'une barre en céramique (matériau fragile) sous une...

Contrainte de Compression dans un Pilier

Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en béton armé doit être construit pour soutenir une partie d'une structure dans un bâtiment de grande hauteur. Le pilier a une section transversale...

Évaluation de la Capacité de Traction d’une Poutre

Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...

Calcul de la position de l’axe neutre

Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piétonnier. La structure principale du pont est composée de poutres en...

Calcul des déformations dans une poutre

Calcul des déformations dans une poutre Comprendre sur le calcul des déformations dans une  poutre vous allez calculer les déformations dans une poutre en utilisant la théorie de la flexion des poutres. On considère une poutre encastrée à une extrémité et libre à...

Charges, contraintes et déformations

Calculer les charges, contraintes, déformations Comprendre les charges, contraintes et déformations Imaginez une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu'à une...