Charges, contraintes et déformations

Calculer les charges, contraintes, déformations

Comprendre les charges, contraintes et déformations

Imaginez une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu’à une charge ponctuelle située au milieu de sa longueur.

Données

  • Longueur de la poutre, \( L \): 6 mètres.
  • Module d’élasticité de l’acier, \( E \): 200 GPa (GigaPascals).
  • Moment d’inertie de la section de la poutre, \( I \): \( 4 \times 10^{-6} \, \text{m}^4 \).
  • Charge uniformément répartie, \( q \): 5 kN/m (kiloNewtons par mètre).
  • Charge ponctuelle, \( P \): 10 kN (kiloNewtons), appliquée au milieu de la poutre.
    Charges, contraintes et déformations

    Questions:

    1. Calculer la réaction aux appuis.
    2. Déterminer la position et la valeur de la contrainte maximale dans la poutre.
    3. Calculer la déformation maximale de la poutre.

      Remarques

      • Considérez que la poutre est dans un régime élastique linéaire, c’est-à-dire que la loi de Hooke est applicable.
      • Les calculs doivent tenir compte des unités correctes et de leur conversion si nécessaire.

      Correction : les charges, contraintes et déformations

      1. Calcul des réactions aux appuis

      Données :

      • Longueur de la poutre, \(L\): 6 mètres.
      • Charge uniformément répartie, \(q\): 5 kN/m.
      • Charge ponctuelle, \(P\): 10 kN, appliquée au milieu de la poutre.

      Réactions aux appuis :

      • La charge totale due à la distribution uniforme est

      \[q \times L = 5 \text{ kN/m} \times 6 \text{ m} = 30 \text{ kN}\]

      • La réaction aux appuis pour une poutre simplement appuyée sous une charge uniformément répartie et une charge ponctuelle appliquée au centre est équitablement répartie.

      Ainsi, avec \(P = 10 \text{ kN}\) ajouté, le total des charges est

      \[30 \text{ kN} + 10 \text{ kN} = 40 \text{ kN}\]

      • Les réactions aux appuis sont

      \[R_A = R_B = \frac{40 \text{ kN}}{2} = 20 \text{ kN}\]

      2. Calcul de la contrainte maximale

      Moment fléchissant maximal (\(M_{max}\)) :

      Le moment fléchissant maximal se produit sous la charge ponctuelle. On calcule ce moment par

      \[M_{max} = R_A \times \frac{L}{2} – \frac{1}{2} \times q \times \left(\frac{L}{2}\right)^2\]

      En substituant les valeurs :

      \[M_{max} = 20 \text{ kN} \times 3 \text{ m} – \frac{1}{2} \times 5 \text{ kN/m} \times (3 \text{ m})^2 \] \[M_{max} = 60 \text{ kN} \cdot \text{m} – 22.5 \text{ kN} \cdot \text{m} \] \[M_{max} = 37.5 \text{ kN} \cdot \text{m}\]

      Contrainte maximale (\(\sigma_{max}\)) :

      Pour calculer la contrainte maximale (\(\sigma_{max}\)) en laissant la hauteur de la section de la poutre comme une variable, nous utilisons l’équation de la contrainte dans une section en flexion :

      \[\sigma_{max} = \frac{M_{max} \cdot y}{I}\]

      où :

      • \(M_{max} = 37.5 \, \text{kN} \cdot \text{m}\) est le moment fléchissant maximal,
      • \(y\) est la distance de l’axe neutre à la fibre la plus éloignée, que nous considérons comme \(\frac{h}{2}\) avec \(h\) étant la hauteur de la section de la poutre,
      • \(I\) est le moment d’inertie de la section de la poutre, pour lequel l’expression standard pour un rectangle est \(\frac{1}{12}bh^3\), où \(b\) est la largeur de la section de la poutre. Puisque \(I\) est donné comme \(4 \times 10^{-6} \, \text{m}^4\), nous continuerons avec cette valeur directement.

      Substituons ces valeurs dans l’équation de la contrainte maximale :

      \[\sigma_{max} = \frac{37.5 \times 10^3 \cdot \frac{h}{2}}{4 \times 10^{-6}}\]

      Calculons \(\sigma_{max}\) en fonction de \(h\).

      La contrainte maximale (\(\sigma_{max}\)) en laissant la hauteur de la section de la poutre comme une variable \(h\) est :

      \[\sigma_{max} = 4687500000 \cdot h \, \text{Pa}\]

      Cela signifie que la contrainte maximale est proportionnelle à la distance \(y\) (demi-hauteur de la section de la poutre, ici simplifiée par \(h\)) et s’exprime en Pascals (Pa).

      Cette relation vous permet d’évaluer la contrainte maximale pour n’importe quelle valeur spécifique de \(h\), en gardant à l’esprit que \(h\) est la hauteur totale de la section de la poutre.

      3. Calcul de la déformation maximale

      Déformation due à la charge uniformément répartie (\(\delta_q\)) :

      \[\delta_q = \frac{5}{384} \times \frac{q \times L^4}{E \times I}\] \[ \delta_q = \frac{5}{384} \times \frac{5 \times 10^3 \times 6^4}{200 \times 10^9 \times 4 \times 10^{-6}} \] \[ \delta_q = 0.10547 \, \text{m} = 105.47 \, \text{mm} \]

      Déformation due à la charge ponctuelle (\(\delta_P\)) :

      \[\delta_P = \frac{P \times L^3}{48 \times E \times I} \] \[ \delta_P = \frac{10 \times 10^3 \times 6^3}{48 \times 200 \times 10^9 \times 4 \times 10^{-6}} \] \[ \delta_P = 0.05625 \, \text{m} = 56.25 \, \text{mm} \]

      Déformation totale (\(\delta_{total}\)) :

      La déformation totale est la somme des déformations dues à la charge uniformément répartie et à la charge ponctuelle :

      \[\delta_{total} = \delta_q + \delta_P \] \[\delta_{total} = 105.47 \text{ mm} + 56.25 \text{ mm} \] \[\delta_{total} = 161.72 \text{ mm}\]

      Charges, contraintes et déformations

      D’autres exercices de Rdm :

      Chers passionnés de génie civil,

      Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

      Cordialement, EGC – Génie Civil

      0 commentaires

      Soumettre un commentaire

      Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

      Analyse de la Contrainte et Déformation

      Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

      Analyse des Forces dans une Poutre

      Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous êtes ingénieur civil et vous travaillez sur la conception d'une passerelle piétonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

      Analyse des Contraintes par le Cercle de Mohr

      Analyse des Contraintes par le Cercle de Mohr Comprendre l'Analyse des Contraintes par le Cercle de Mohr Dans le cadre d’un projet de génie civil, un ingénieur doit analyser les contraintes dans une poutre en béton armé soumise à diverses charges. La section...

      Tracé d’Effort Tranchant et du Moment Fléchissant

      Tracé d'Effort Tranchant et du Moment Fléchissant Comprendre le Tracé d'Effort Tranchant et du Moment Fléchissant Vous êtes ingénieur en structure et devez analyser une poutre simplement appuyée utilisée dans la construction d'un petit pont piétonnier. Cette poutre...

      Résistance des Matériaux Ductiles et Fragiles

      Résistance des Matériaux Ductiles et Fragiles Comprendre la Résistance des Matériaux Ductiles et Fragiles Vous êtes ingénieur civil et vous devez analyser la résistance d'une barre en acier (matériau ductile) et d'une barre en céramique (matériau fragile) sous une...

      Contrainte de Compression dans un Pilier

      Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en béton armé doit être construit pour soutenir une partie d'une structure dans un bâtiment de grande hauteur. Le pilier a une section transversale...

      Évaluation de la Capacité de Traction d’une Poutre

      Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...

      Calcul de la position de l’axe neutre

      Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piétonnier. La structure principale du pont est composée de poutres en...

      Calcul des déformations dans une poutre

      Calcul des déformations dans une poutre Comprendre sur le calcul des déformations dans une  poutre vous allez calculer les déformations dans une poutre en utilisant la théorie de la flexion des poutres. On considère une poutre encastrée à une extrémité et libre à...

      Tension maximale dans le tirant

      Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....