Cisaillement dans une poutre

Cisaillement dans une poutre

Comprendre le cisaillement dans une poutre

Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées.

L’objectif est de déterminer la contrainte de cisaillement maximale dans la poutre.

Pour comprendre la Déformation Axiale Due à la Température, cliquez sur le lien.

Données de l’Exercice

  • Longueur de la poutre, \( L = 6 \) mètres
  • Charge uniformément répartie, \( w = 5 \) kN/m
  • Charges concentrées : \( P_1 = 10 \) kN à 2 m du support gauche, \( P_2 = 15 \) kN à 4 m du support gauche
  • Largeur de la section transversale de la poutre, \( b = 150 \) mm
  • Hauteur de la section transversale de la poutre, \( h = 300 \) mm
  • La poutre est en acier avec une limite d’élasticité de 250 MPa

Questions:

1. Calcul des Réactions aux Appuis :

  • Déterminez les réactions aux appuis en considérant les charges appliquées.

2. Diagramme de Cisaillement :

  • Construisez le diagramme de cisaillement de la poutre. Identifiez les points où le cisaillement est maximal.

3. Calcul de la Contrainte de Cisaillement :

  • Utilisez la formule de cisaillement, \(\tau = \frac{VQ}{Ib}\), où \( V \) est la force de cisaillement, \( Q \) est le moment statique de la zone au-dessus du point d’intérêt, \( I \) est le moment d’inertie de la section transversale, et \( b \) est la largeur de la poutre. Calculez la contrainte de cisaillement maximale dans la poutre.

4. Vérification de la Sécurité :

  • Comparez la contrainte de cisaillement maximale trouvée avec la limite d’élasticité de l’acier.
  • Vérifiez si la poutre est sûre pour les charges données.

Correction : cisaillement dans une poutre

1. Calcul des Réactions aux Appuis

Étape 1: Équilibre vertical

\[R_A + R_B = wL + P_1 + P_2\]
\[ = (5\,\text{kN/m} \times 6\,\text{m}) + 10\,\text{kN} + 15\,\text{kN} \] \[ = 30\,\text{kN} + 25\,\text{kN} \] \[ = 55\,\text{kN} \]

Étape 2: Moment autour d’un des appuis (disons autour de A)

\[R_B \times L = w \times \frac{L}{2} \times L + P_1 \times 2\,\text{m} + P_2 \times 4\,\text{m}\] \[R_B \times 6\,\text{m} = 5\,\text{kN/m} \times 3\,\text{m} \times 6\,\text{m} + 10\,\text{kN} \times 2\,\text{m} + 15\,\text{kN} \times 4\,\text{m}\] \[R_B = \frac{90 + 20 + 60}{6}\,\text{kN}\] \[R_B = \frac{170}{6}\,\text{kN}\] \[R_B \approx 28.33\,\text{kN}\]

Réaction à A:

\[R_A = 55\,\text{kN} – 28.33\,\text{kN} = 26.67\,\text{kN}\]

2. Diagramme de Cisaillement de la Poutre

De 0 à 2 m (Entre l’appui A et la charge \(P_1\)

  • Au point A (0 m), le cisaillement commence à \(V = R_A = 26.67\, \text{kN}\).
  • À une distance \(x\) (où \(0 < x < 2\, \text{m}\)) de l’appui A, la charge répartie qui a agi jusqu’à ce point est \(w \times x = 5\, \text{kN/m} \times x\).
  • Le cisaillement à ce point est donc
    \[ V(x) = R_A – w \times x \]\[ V(x) = 26.67\, \text{kN} – 5\, \text{kN/m} \times x.\]

À 2 m, avant l’application de \(P_1\), le cisaillement sera
\[ V(2) = 26.67\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ V(2) = 26.67\, \text{kN} – 10\, \text{kN} \] \[ V(2)  = 16.67\, \text{kN}.
\]

À 2 m (Effet de la charge \(P_1\))

Juste après l’application de la charge \(P_1\), le cisaillement chute de 10 kN. Donc, à 2 m, juste après \(P_1\), le cisaillement est de

\[ = 16.67\, \text{kN} – 10\, \text{kN} = 6.67\, \text{kN}.
\]

De 2 m à 4 m

De la même manière, entre 2 m et 4 m, le cisaillement continue de diminuer linéairement à cause de la charge répartie. À 4 m, avant \(P_2\), il sera

\[ = 6.67\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ = 6.67\, \text{kN} – 10\, \text{kN} = -3.33\, \text{kN} \]

À 4 m (Effet de la charge \(P_2\))

Juste après l’application de la charge \(P_2\), le cisaillement chute de 15 kN. Donc, à 4 m, juste après \(P_2\), le cisaillement est de

\[ = -3.33\, \text{kN} – 15\, \text{kN} \] \[ = -18.33\, \text{kN} \]

De 4 m à 6 m

Entre 4 m et 6 m, le cisaillement continue de diminuer linéairement jusqu’à l’appui B. À l’appui B (6 m), le cisaillement est

\[ = -18.33\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ = -18.33\, \text{kN} – 10\, \text{kN} \] \[ = -28.33\, \text{kN}, \]

ce qui correspond à la réaction en B.

Résumé et Implications pour le Diagramme de Cisaillement

Le diagramme commence à \(+26.67\, \text{kN}\) à l’appui A, descend linéairement jusqu’à \(+16.67\, \text{kN}\) à 2 m, puis chute brusquement à \(+6.67\, \text{kN}\).

Il continue de descendre linéairement jusqu’à \(-3.33\, \text{kN}\) à 4 m, puis chute brusquement à \(-18.33\, \text{kN}\). Finalement, il continue à descendre linéairement jusqu’à \(-28.33\, \text{kN}\) à l’appui B.

3. Calcul de la Contrainte de Cisaillement

Moment d’inertie (I) de la section transversale rectangulaire:

\begin{align*}
I &= \frac{bh^3}{12} \end{align*} \begin{align*}
I & = \frac{0.15 \, \text{m} \times (0.3 \, \text{m})^3}{12} \end{align*} \begin{align*}
I & \approx 0.0003375 \, \text{m}^4
\end{align*}

Moment statique (Q) pour la hauteur maximale (au centre de la poutre):

\begin{align*}
Q &= A’ \times y’ \end{align*} \begin{align*}
Q & = \frac{bh}{2} \times \frac{h}{4} \end{align*} \begin{align*}
Q & = \frac{0.15 \, \text{m} \times 0.3 \, \text{m}}{2} \times \frac{0.3 \, \text{m}}{4} \end{align*} \begin{align*}
Q & \approx 0.003375 \, \text{m}^3
\end{align*}

Contrainte de cisaillement maximale (\(\tau_{\text{max}}\)) au point de cisaillement maximal (par exemple, à l’appui A):

\begin{align*}
\tau_{\text{max}} &= \frac{V_{\text{max}} Q}{Ib} \end{align*}

\[ \tau_{\text{max}} = \frac{26.67 \times 10^3 \, \text{N} \times 0.003375 \, \text{m}^3}{0.0003375 \, \text{m}^4 \times 0.15 \, \text{m}} \] \begin{align*}
\tau_{\text{max}} & \approx 1.67 \, \text{MPa}
\end{align*}

4. Vérification de la Sécurité

La contrainte de cisaillement maximale est \(\tau_{\text{max}} = 1.67 \, \text{MPa}\), qui est bien inférieure à la limite d’élasticité de l’acier de 250 MPa.

Par conséquent, la poutre est considérée comme sûre sous ces charges.

Cisaillement dans une poutre

cisaillement dans une poutre

D’autres exercices de Rdm :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Facteur de Sécurité

Calcul du Facteur de Sécurité d’une Poutre Comprendre le calcul du facteur de sécurité d'une poutre Vous êtes ingénieur en structure et devez vérifier la sécurité d'une poutre en acier dans une construction. Le but de cet exercice est de déterminer le facteur de...

Déformation Axiale Due à la Température

Déformation Axiale Due à la Température Comprendre la Déformation Axiale Due à la Température Un ingénieur civil doit concevoir un pylône de transmission électrique qui traverse une région soumise à des variations de température extrêmes. Le pylône est constitué d'une...

Contrainte et Raccourcissement dans une Poutre

Contrainte et Raccourcissement dans une Poutre Comprendre la Contrainte et Raccourcissement dans une Poutre Vous êtes ingénieur dans une entreprise de construction et vous devez analyser l'intégrité structurelle d'une poutre utilisée dans la construction d'un pont. La...

Analyse de la Contrainte et Déformation

Analyse de la Contrainte et Déformation Comprendre l'Analyse de la Contrainte et Déformation Un nouveau pont piétonnier est en cours de conception dans une zone urbaine. La structure principale du pont comprend une série de poutres en acier disposées pour supporter la...

Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre Comprendre l'Analyse des Forces dans une Poutre Vous êtes ingénieur civil et vous travaillez sur la conception d'une passerelle piétonne au-dessus d'un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement...

Analyse des Contraintes par le Cercle de Mohr

Analyse des Contraintes par le Cercle de Mohr Comprendre l'Analyse des Contraintes par le Cercle de Mohr Dans le cadre d’un projet de génie civil, un ingénieur doit analyser les contraintes dans une poutre en béton armé soumise à diverses charges. La section...

Tracé d’Effort Tranchant et du Moment Fléchissant

Tracé d'Effort Tranchant et du Moment Fléchissant Comprendre le Tracé d'Effort Tranchant et du Moment Fléchissant Vous êtes ingénieur en structure et devez analyser une poutre simplement appuyée utilisée dans la construction d'un petit pont piétonnier. Cette poutre...

Résistance des Matériaux Ductiles et Fragiles

Résistance des Matériaux Ductiles et Fragiles Comprendre la Résistance des Matériaux Ductiles et Fragiles Vous êtes ingénieur civil et vous devez analyser la résistance d'une barre en acier (matériau ductile) et d'une barre en céramique (matériau fragile) sous une...

Contrainte de Compression dans un Pilier

Contrainte de Compression dans un Pilier Comprendre le calcul de la Contrainte de Compression dans un Pilier Un pilier en béton armé doit être construit pour soutenir une partie d'une structure dans un bâtiment de grande hauteur. Le pilier a une section transversale...

Évaluation de la Capacité de Traction d’une Poutre

Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...