Comportement plastique et la rupture

Comportement plastique et la rupture

Comprendre le comportement plastique et la rupture

Un ingénieur conçoit une poutre en acier pour supporter une charge dans une construction industrielle.

L’acier a un comportement élastoplastique et l’ingénieur doit s’assurer que la poutre ne subira ni déformation plastique excessive ni rupture sous la charge maximale prévue.

Données

  • Matériau de la poutre: Acier, avec une limite élastique de 250 MPa et une résistance à la rupture de 500 MPa.
  • Dimensions de la poutre: Longueur = 6 m, section transversale carrée de côté 100 mm.
  • Charge maximale prévue: 300 kN appliquée au centre de la poutre.

Instructions:

  1. Calculer la contrainte dans la poutre sous la charge maximale.
  2. Déterminer si la poutre subira une déformation plastique sous cette charge.
  3. Calculer la charge maximale que la poutre peut supporter avant de subir une rupture.

Correction : comportement plastique et la rupture

1. Calcul de la contrainte:

La contrainte \(\sigma\) est donnée par

\[ \sigma = \frac{F}{A} \]

où \(F\) est la force appliquée et \(A\) l’aire de la section transversale.

  • Aire

\[ A = (100\, \text{mm})^2 \] \[ A = 10^4\, \text{mm}^2 = 10^{-2}\, \text{m}^2 \]

  • Force

\[ F = 300\, \text{kN} = 300 \times 10^3\, \text{N} \]

Ainsi, \[ \sigma = \frac{300 \times 10^3}{10^{-2}} \] \[ \sigma = 30 \times 10^6\, \text{Pa} = 30\, \text{MPa} \]

2. Déformation plastique:

  • La limite élastique de l’acier est 250 MPa.
  • La contrainte calculée (30 MPa) est inférieure à la limite élastique.
  • Conclusion: La poutre ne subira pas de déformation plastique sous cette charge.

3. Charge maximale avant rupture:

La contrainte maximale avant la rupture est la résistance à la rupture, soit 500 MPa.

Réarrangeons \(\sigma = \frac{F}{A}\) pour trouver \(F\).

\[ F = \sigma \times A \] \[ F = 500\, \text{MPa} \times 10^{-2}\, \text{m}^2 \]  \[ F = 500 \times 10^6 \times 10^{-2}\, \text{N} \] \[ F = 5 \times 10^6\, \text{N} \]

La charge maximale avant rupture est donc de 5000 kN.

Comportement plastique et la rupture

D’autres exercices de Rdm :

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Évaluation de la Capacité de Traction d’une Poutre

Évaluation de la Capacité de Traction d'une Poutre Comprendre l'Évaluation de la Capacité de Traction d'une Poutre Un ingénieur en génie civil doit concevoir une poutre en acier pour supporter une charge uniformément répartie, incluant son propre poids, sur une portée...

Calcul de la position de l’axe neutre

Calcul de la position de l'axe neutre Comprendre le Calcul de la position de l'axe neutre Vous êtes ingénieur dans une entreprise de construction et vous travaillez sur la conception d'un pont piétonnier. La structure principale du pont est composée de poutres en...

Calcul des déformations dans une poutre

Calcul des déformations dans une poutre Comprendre sur le calcul des déformations dans une  poutre vous allez calculer les déformations dans une poutre en utilisant la théorie de la flexion des poutres. On considère une poutre encastrée à une extrémité et libre à...

Charges, contraintes et déformations

Calculer les charges, contraintes, déformations Comprendre les charges, contraintes et déformations Imaginez une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu'à une...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

Contrainte Tangentielle dans une Poutre Chargée

Contrainte Tangentielle dans une Poutre Chargée Comprendre la Contrainte Tangentielle dans une Poutre Chargée Une poutre, désignée par AD, est conçue en bois lamellé-collé. Elle présente une section rectangulaire qui repose sur la tranche. Données géométriques : La...

Vérification de la Rigidité d’une Poutre

Vérification de la Rigidité d'une Poutre Comprendre la Vérification de la Rigidité d'une Poutre Une entreprise de construction doit installer une passerelle piétonne en acier dans un parc public. La passerelle doit supporter non seulement le poids des piétons mais...

Calcul l’effort tranchant et le moment

Calcul l'effort tranchant et le moment Comprendre le calcul l'effort tranchant et le moment : Vous êtes ingénieur en structure et vous devez analyser une poutre simplement appuyée. Cette poutre supporte plusieurs charges réparties et concentrées. Données Longueur de...

Analyse de la Stabilité d’un Pylône

Analyse de la Stabilité d'un Pylône Comprendre l'Analyse de la Stabilité d'un Pylône Un ingénieur structure doit concevoir un pylône de transmission électrique en acier. La conception doit assurer que le pylône peut résister aux charges dues au vent et au poids des...

Vérification de l’équilibre des forces verticales

Vérification de l'équilibre des forces verticales Comprendre la Vérification de l'équilibre des forces verticales Vous êtes ingénieur en structure et travaillez sur la conception d'un pont piétonnier. Ce pont est modélisé par une poutre complexe soutenue par deux...