Voile en béton armé dimensionnement

Voile en béton armé Dimensionnement

Comprendre le Voile en béton armé Dimensionnement

Objectif : Dimensionner un voile en béton armé soumis à des sollicitations verticales et horizontales.

Pour comprendre Dimensionnement d’un tirant en béton armé et le Ferraillage semelle isolée, cliquez sur les liens.

Données initiales

Hauteur du voile H = 5 m
Largeur du voile L = 3 m
Épaisseur initiale \(e_0 = 20 \, \text{cm}\)
Charge verticale concentrée en haut du voile \(P = 50 \, \text{kN}\)
Surcharge horizontale due au vent \(q_{\text{vent}} = 0.8 \, \text{kN/m}^2\)

Béton : classe C25/30

  • Résistance à la compression \(f_{ck} = 25 \, \text{MPa}\)
  • Masse volumique \(\rho = 2500 \, \text{kg/m}^3\)

Acier : Fe500

  • Résistance à la traction \(f_{yk} = 500 \, \text{MPa}\)
  • Module d’élasticité \(E_s = 200 \, \text{GPa}\)

Coefficient partiel pour le béton \(\gamma_c = 1.5\)
Coefficient partiel pour l’acier \(\gamma_s = 1.15\)

Questions:

  1. Calcul des sollicitations:
    • Calculez la charge due au poids propre du voile.
    • Calculez la charge horizontale totale due au vent sur le voile.
    • Appliquez le principe des moments pour déterminer le moment fléchissant maximal dû à la charge verticale et la surcharge due au vent.
  2. Vérification de la capacité à l’effort tranchant:
    • Calculez la contrainte d’effort tranchant au pied du voile.
    • Comparez cette valeur à la capacité du béton à l’effort tranchant.
  3. Dimensionnement à la flexion:
    • Utilisez la méthode des sections réduites ou une autre méthode appropriée pour déterminer la section et la disposition des armatures nécessaires pour résister au moment fléchissant maximal.
  4. Vérification à la compression:
    • Calculez la contrainte de compression due au poids propre et à la charge verticale.
    • Vérifiez que cette contrainte est inférieure à la capacité de compression du béton.
  5. Proposez une épaisseur finale du voile (si nécessaire) :
    • Si les vérifications précédentes indiquent que l’épaisseur initiale n’est pas suffisante, proposez une nouvelle épaisseur et répétez les étapes précédentes.

Correction : Dimensionner un voile en béton armé

1. Calcul des sollicitations

a. Charge due au poids propre du voile:

La charge due au poids propre du voile se calcule par la formule :

\[G_{k,\text{voile}} = \rho \times e_0 \times L \times g\]

En substituant les valeurs données :

\[G_{k,\text{voile}} = 2500 \, \text{kg/m}^3 \times 0.2 \, \text{m} \times 3 \, \text{m} \times 9.81 \, \text{m/s}^2 \] \[G_{k,\text{voile}} = 14.715 \, \text{kN/m}\]

La charge totale due au poids propre sur toute la hauteur du voile est :

\[G_{k,\text{voile,total}} = G_{k,\text{voile}} \times H \] \[G_{k,\text{voile,total}} = 14.715 \, \text{kN/m} \times 5 \, \text{m} \] \[G_{k,\text{voile,total}} = 73.575 \, \text{kN}\]

b. Charge horizontale due au vent:

La charge horizontale totale due au vent sur le voile est calculée par :

\[Q_{k,\text{vent}} = q_{\text{vent}} \times L \times H \] \[Q_{k,\text{vent}} = 0.8 \, \text{kN/m}^2 \times 3 \, \text{m} \times 5 \, \text{m} \] \[Q_{k,\text{vent}} = 12 \, \text{kN}\]

c. Moment fléchissant maximal dû à la charge verticale et au vent:

Le moment fléchissant dû à la charge verticale \(P\), appliquée au sommet, serait normalement calculé en considérant la hauteur du voile.

Pour une charge concentrée en haut du voile, le moment fléchissant maximal serait :

\[M_{f,\text{max}} = P \times \frac{H}{2} \] \[M_{f,\text{max}} = 50 \, \text{kN} \times \frac{5 \, \text{m}}{2} \] \[M_{f,\text{max}} = 125 \, \text{kNm}\]

2. Vérification de la capacité à l’effort tranchant

L’effort tranchant \( V_{Ed} \) dû à la charge horizontale est calculé par la formule suivante :

\[ V_{Ed} = Q_{k, \text{vent}} \times L \]

où \( Q_{k, \text{vent}} \) représente la charge horizontale totale due au vent et \( L \) est la longueur du voile.

En substituant les valeurs données :

\[ V_{Ed} = 12 \, \text{kN} \times 3 \, \text{m} \] \[ V_{Ed} = 36 \, \text{kN} \]

L’effort tranchant total dû au vent est de \( 36 \, \text{kN} \).

3. Dimensionnement à la flexion

En utilisant la formule pour le dimensionnement à la flexion, la distance utile \(d\) et l’aire d’acier requise \(A_{s,\text{req}}\) sont calculées comme suit, en supposant un diamètre de ligature standard de 8mm (0.008m) :

\[d = e_0 – \frac{\text{dia. ligature}}{2} \] \[d = 0.2 \, \text{m} – \frac{0.008 \, \text{m}}{2} \] \[d = 0.196 \, \text{m}\]

L’aire des armatures requise est ::

\[ A_{s,req} = \frac{M_{f,max}}{f_{yd} \times d} \]

où \(f_{yd}\) est la résistance de calcul de l’acier, \(d\) est la distance utile, et \(M_{f,max}\) est le moment fléchissant maximal.

La résistance de calcul de l’acier \(f_{yd}\) est obtenue par :

\[f_{yd} = \frac{f_{yk}}{\gamma_s} = \frac{500 \, \text{MPa}}{1.15} = 434.78 \, \text{MPa}\]

en substituant les valeurs dans l’équation de \(A_{s,req}\) :

\[A_{s,req} = \frac{125 \times 10^6 \, \text{Nmm}}{434.78 \, \text{MPa} \times 0.196 \, \text{m}} \] \[A_{s,req} = 1471.45 \, \text{mm}^2/\text{m}\]

4. Vérification à la compression

La vérification à la compression s’effectue en calculant la contrainte de compression \(\sigma_c\) avec les charges appliquées et en la comparant à la résistance caractéristique du béton.

La contrainte de compression est donnée par la formule :

\[\sigma_c = \frac{G_{k,voile,total} + P}{e_0 \times L}\]

Substituant les valeurs données :

\[\sigma_c = \frac{73.575 \, \text{kN} + 50 \, \text{kN}}{0.2 \, \text{m} \times 3 \, \text{m}} \] \[\sigma_c = \frac{123.575 \, \text{kN}}{0.6 \, \text{m}^2} \] \[\sigma_c = 205.958 \, \text{kN/m}^2\] \[ \sigma_c = 205.958 \, \text{kN/m}^2 = 20.6 \, \text{MPa} \]

Pour le béton C25/30, la résistance caractéristique à la compression \(f_{ck}\) est 25 MPa. Étant donné que \(\sigma_c = 20.6 \, \text{MPa} < f_{ck} = 25 \, \text{MPa}\), la contrainte de compression est inférieure à la résistance caractéristique du béton, ce qui est satisfaisant.

5. Proposition d’une épaisseur finale du voile

L’épaisseur initiale de 20 cm est confirmée comme étant suffisante, car toutes les vérifications précédentes montrent que les exigences sont satisfaites. Aucune modification de l’épaisseur n’est nécessaire.

Conclusion

Après correction, le voile en béton armé de 20 cm d’épaisseur est correctement dimensionné pour résister aux charges verticales et horizontales spécifiées, conformément aux normes de l’Eurocode 2.

Les armatures nécessaires pour résister au moment fléchissant maximal sont de \(1471.45 \, \text{mm}^2/\text{m}\), et la contrainte de compression est inférieure à la résistance caractéristique du béton.

Voile en béton armé Dimensionnement

D’autres exercices de béton armé :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de la charge de neige sur une toiture

Calcul de la charge de neige sur une toiture Comprendre le Calcul de la charge de neige sur une toiture Vous êtes un ingénieur civil chargé de vérifier la sécurité structurelle d'un bâtiment de bureau situé dans une région montagneuse connue pour ses hivers rigoureux....

Descente de charges sur une dalle

Descente de charges sur une dalle Comprendre la Descente de charges sur une dalle Vous êtes un ingénieur structure dans un bureau d'études et devez réaliser le calcul de descente des charges pour la dalle d'un nouveau bâtiment résidentiel de quatre étages. Le bâtiment...

Calcul des Dimensions d’un Poteau en Béton

Calcul des Dimensions d'un Poteau en Béton Comprendre le Calcul des Dimensions d'un Poteau en Béton Vous êtes ingénieur en structure pour une société de construction chargée de concevoir un immeuble de bureaux de 5 étages. Pour soutenir la structure, vous devez...

Descente des charges sur une poutre

Descente des charges sur une poutre Comprendre la Descente des charges sur une poutre Vous êtes un ingénieur en structure qui travaille sur la conception d'un petit bâtiment de bureaux de deux étages. La structure est constituée de poutres en béton armé qui supportent...

Calcul de la force de précontrainte

Calcul de la force de précontrainte Comprendre le Calcul de la force de précontrainte Un pont en béton précontraint doit être conçu pour supporter des charges de trafic importantes. L'objectif principal de cet exercice est de calculer la force de précontrainte requise...

Calcul du moment de résistance à la flexion

Calcul du moment de résistance à la flexion Comprendre le Calcul du moment de résistance à la flexion Dans le cadre de la construction d'un nouveau pont piétonnier sur une petite rivière, il est nécessaire de calculer la résistance à la flexion des poutres en béton...

Dimensionnement à l’ELU d’une dalle

Dimensionnement à l'ELU d'une dalle Comprendre le Dimensionnement à l'ELU d'une dalle Vous êtes un ingénieur en structure travaillant sur la conception d'un nouveau centre commercial. Une des composantes critiques de votre projet est le dimensionnement d'une dalle en...

Calcul du Ratio d’Armature en Béton Armé

Calcul du Ratio d'Armature en Béton Armé Comprendre le Calcul du Ratio d'Armature en Béton Armé Vous êtes ingénieur en génie civil et vous travaillez sur la conception d'une dalle en béton armé pour un bâtiment résidentiel. La dalle est de forme rectangulaire et doit...

Calcul de l’Espacement des Étriers d’une Poutre

Calcul de l'Espacement des Étriers d'une Poutre Comprendre le Calcul de l'Espacement des Étriers d'une Poutre Vous travaillez pour une entreprise de construction qui doit concevoir une poutre en béton armé pour un bâtiment résidentiel. La poutre doit supporter des...

Dimensionnement d’un tirant en béton armé

Dimensionnement d'un tirant en béton armé Comprendre le Dimensionnement d'un tirant en béton armé Vous êtes ingénieur en génie civil et vous devez dimensionner un tirant en béton armé pour un projet de construction d'un pont. Votre tâche consiste à déterminer les...