Calcul de la Section d’Armature d’une poutre

Calcul de la Section d’Armature d’une poutre

Comprendre le Calcul de la Section d’Armature d’une poutre

Vous êtes ingénieur(e) structure dans un bureau d’études et vous travaillez sur la conception d’un bâtiment résidentiel.

Une des poutres principales de la structure, située au rez-de-chaussée et supportant les charges des étages supérieurs, nécessite une conception détaillée pour assurer la sécurité et la stabilité de l’ensemble du bâtiment.

Cette poutre sera en béton armé et devra être conçue selon les normes de l’Eurocode 2.

Données de l’Exercice:

  • Longueur de la poutre, \(L\): 8 mètres
  • Largeur de la poutre, \(b\): 300 mm
  • Hauteur de la poutre, \(h\): 600 mm
  • Couverture en béton, \(c\): 25 mm
  • Diamètre des barres d’armature longitudinales, \(\phi\): 20 mm
  • Classe de résistance du béton: C25/30
  • Classe d’acier d’armature: B500B
  • Charge permanente (G), y compris le poids propre de la poutre: 30 kN/m
  • Charge variable (Q): 20 kN/m
  • Coefficients de sécurité partiels pour les charges: \(\gamma_G = 1.35\), \(\gamma_Q = 1.5\)

Objectifs de l’Exercice:

1. Calcul des Moments Fléchissants (\(M_{Ed}\)):

Déterminez le moment fléchissant de calcul en tenant compte des charges permanentes et variables appliquées à la poutre, en utilisant les coefficients de sécurité partiels.

2. Détermination de la Section d’Armature Nécessaire (\(A_{s,req}\)):

Calculez la section d’armature nécessaire pour résister au moment fléchissant de calcul, en utilisant les propriétés du matériau (béton et acier) selon l’Eurocode 2.

3. Vérification de la Section d’Armature Minimale et Maximale:

Vérifiez si la section d’armature calculée respecte les exigences minimales et maximales de l’Eurocode 2 pour assurer une distribution adéquate des contraintes et une bonne ductilité de la poutre.

Correction : Calcul de la Section d’Armature d’une poutre

1. Calcul du Moment Fléchissant de Calcul (\(M_{Ed}\))

Calcul des charges agissant sur la poutre:

  • Charge permanente (\(G\)) : 30 kN/m
  • Charge variable (\(Q\)) : 20 kN/m

Les charges totales sont multipliées par leurs coefficients de sécurité respectifs :

  • \( G_{tot} = G \times \gamma_G = 30 \times 1.35 = 40.5 \text{ kN/m} \)
  • \( Q_{tot} = Q \times \gamma_Q = 20 \times 1.5 = 30 \text{ kN/m} \)

Charge totale agissant sur la poutre :

\[ W = G_{tot} + Q_{tot} \] \[ W = 40.5 + 30 = 70.5 \text{ kN/m} \]

Détermination du moment fléchissant de calcul (\(M_{Ed}\)):

Pour une poutre simplement appuyée avec une charge uniformément répartie, le moment fléchissant maximal est donné par :

\[ M_{Ed} = \frac{W \times L^2}{8} \]

En substituant les valeurs :

\[ M_{Ed} = \frac{70.5 \times 8^2}{8} \] \[ M_{Ed} = \frac{70.5 \times 64}{8} \] \[ M_{Ed} = 564 \text{ kNm} \]

2. Détermination de la Section d’Armature Nécessaire (\(A_{s,req}\))

Pour calculer \(A_{s,req}\), nous utilisons la formule simplifiée basée sur l’équilibre des moments en flexion, en considérant la limite élastique de l’acier (\(f_{yd}\)) et la dimension efficace de la section (\(d = h – c – \frac{\phi}{2}\)) :

\[ d = 600 – 25 – 10 = 565 \text{ mm} \]

Nous utilisons l’approche de l’Eurocode pour estimer \(A_{s,req}\) à partir de \(M_{Ed}\), \(f_{yd}\), et \(d\). Pour l’acier B500B, \(f_{yd}\) est typiquement pris comme 435 MPa (après application des facteurs de sécurité) :

\[ A_{s,req} = \frac{M_{Ed} \times 10^6}{0.9 \times d \times f_{yd}} \]

En substituant les valeurs :

\[ A_{s,req} = \frac{564 \times 10^6}{0.9 \times 565 \times 435} \] \[ A_{s,req} \approx 1453 \text{ mm}^2 \]

3. Vérification des Sections d’Armature

Selon l’Eurocode 2, la section d’armature minimale (\(A_{s,min}\)) et maximale (\(A_{s,max}\)) est déterminée par des considérations spécifiques. Pour une largeur de poutre de 300 mm et une hauteur efficace d’environ 565 mm :

\[ A_{s,min} \approx 0.0026 \times b \times h \] \[ A_{s,min} = 0.0026 \times 300 \times 565 \] \[ A_{s,min} \approx 441 \text{ mm}^2 \]

\[ A_{s,max} \approx 0.04 \times b \times h \] \[ A_{s,max} = 0.04 \times 300 \times 565 \] \[ A_{s,max} \approx 6780 \text{ mm}^2 \]

Conclusion:

Avec une section d’armature requise de 1453 mm\(^2\), nous constatons que cette valeur se situe bien entre les limites minimale et maximale spécifiées par l’Eurocode 2 pour cette poutre en béton armé :

  • Section d’armature minimale requise \((A_{s,\text{min}})\) \(\approx 441\,\text{mm}^2\)
  • Section d’armature calculée nécessaire \((A_{s,\text{req}})\) \(\approx 1453\,\text{mm}^2\)
  • Section d’armature maximale autorisée \((A_{s,\text{max}})\) \(\approx 6780\,\text{mm}^2\)

Cela signifie que la quantité d’armature calculée (\(1453\,\text{mm}^2\)) est adéquate pour résister au moment fléchissant de calcul \((M_{\text{Ed}})\) imposé par les charges, tout en respectant les exigences de l’Eurocode 2 concernant les sections d’armature minimales et maximales. Cela assure une bonne répartition des contraintes dans la poutre et une ductilité adéquate pour la sécurité structurelle.

La prochaine étape consisterait à sélectionner une disposition d’armatures qui fournisse la section transversale totale d’acier requise. Par exemple, en utilisant des barres d’un diamètre de 20 mm avec une aire de \(314\,\text{mm}^2\) par barre, on pourrait choisir de disposer 5 barres (2 en bas et 3 en haut) pour fournir une aire totale d’armature de \(1570\,\text{mm}^2\), légèrement au-dessus de l’exigence calculée, pour tenir compte des tolérances de construction et des approximations dans le calcul.

Calcul de la Section d’Armature d’une poutre

D’autres exercices de béton armé:

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Module d’Young à partir d’un Essai de Traction

Module d'Young à partir d'un Essai de Traction Comprndre le Module d'Young à partir d'un Essai de Traction Une entreprise de construction doit vérifier les propriétés mécaniques du béton armé utilisé pour la construction d'un pont. Pour cela, elle procède à un essai...

Poutre en Béton Précontraint

Poutre en Béton Précontraint Comprendre le calcul de la poutre en béton précontraint: Vous êtes ingénieur(e) en structure au sein d'une société de construction. Votre projet actuel consiste à concevoir un pont routier qui comprend plusieurs poutres en béton...

Évaluation de la Conformité du Béton

Évaluation de la Conformité du Béton Comprendre l'Évaluation de la Conformité du Béton Vous êtes l'ingénieur de contrôle qualité sur le site de construction d'un nouveau pont. Le pont doit être construit avec des spécifications très strictes pour garantir sa longévité...

Calcul d’une poutre de redressement

Calcul d'une poutre de redressement Comprendre le calcul d'une poutre de redressement Un bureau d'ingénierie est chargé de concevoir une poutre de redressement en béton armé pour soutenir une dalle de plancher dans un bâtiment résidentiel. La poutre doit être conçue...

Calcul la Durabilité du Béton Armé

Calcul la Durabilité du Béton Armé Comprendre le Calcul la Durabilité du Béton Armé Vous êtes un ingénieur en structure chargé de concevoir un poteau en béton armé pour un bâtiment commercial situé dans une zone côtière. L'objectif est d'assurer la durabilité de ce...

Calcul les aciers d’un poteau

Calcul des Aciers d’un Poteau Comprendre le calcul des aciers d'un poteau : Vous êtes chargé de concevoir un poteau en béton armé pour un bâtiment de bureaux. Le poteau doit respecter les normes de l'Eurocode 2 (EN 1992-1-1) pour les structures en béton. Données :...

Voile en béton armé dimensionnement

Voile en béton armé Dimensionnement Comprendre le Voile en béton armé Dimensionnement Objectif : Dimensionner un voile en béton armé soumis à des sollicitations verticales et horizontales. Données initiales Hauteur du voile H = 5 mLargeur du voile L = 3 mÉpaisseur...

Ferraillage semelle isolée

Ferraillage semelle isolée Comprendre le ferraillage semelle isolée : Vous êtes ingénieur en génie civil chargé de la conception et du ferraillage d’une semelle isolée pour une colonne d’un bâtiment R+4 (rez-de-chaussée plus quatre étages). La semelle doit répartir...

Calcul des Efforts en Béton Précontraint

CALCUL DES EFFORTS EN BÉTON PRÉCONTRAINT Comprendre le calcul des efforts en béton précontraint Dans le cadre de la conception des structures, le calcul des efforts internes joue un rôle crucial pour assurer la sécurité et la performance des bâtiments.  Le béton...

Vérification de la Section de Précontrainte

Vérification de la Section de Précontrainte Comprendre la Vérification de la Section de Précontrainte Vous êtes ingénieur structure dans une entreprise de construction et devez concevoir une poutre en béton précontraint pour un nouveau projet de bâtiment. Cette poutre...