Calcul les aciers d’un poteau

Calcul des Aciers d’un Poteau

Comprendre le calcul des aciers d’un poteau :

Vous êtes chargé de concevoir un poteau en béton armé pour un bâtiment de bureaux. Le poteau doit respecter les normes de l’Eurocode 2 (EN 1992-1-1) pour les structures en béton.

Données :

  • Hauteur du poteau : 3,5 m
  • Section transversale du poteau : carrée, 300 mm x 300 mm
  • Béton : C25/30
  • Acier : B500B
  • Charges permanentes (G) : 200 kN
  • Charges variables (Q) : 100 kN
  • Coefficients de sécurité selon l’Eurocode : γ_G = 1,35, γ_Q = 1,5

Tâches :

  1. Détermination des Charges de Calcul : Calculez les charges de conception en utilisant les combinaisons de charges selon l’Eurocode.
  2. Calcul de l’Effort Axial : Déterminez l’effort axial maximal que le poteau doit supporter.
  3. Vérification de la Section de Béton : Vérifiez si la section en béton choisie est adéquate pour supporter les charges calculées, en tenant compte de la résistance du béton.
  4. Calcul des Aciers Nécessaires :
    • Déterminez la quantité d’acier nécessaire pour armer le poteau. Utilisez les formules de l’Eurocode pour le calcul des armatures en traction/compression.
    • Vérifiez le pourcentage minimal et maximal d’armature requis selon l’Eurocode.
  5. Disposition des Armatures : Proposez un arrangement d’armatures (nombre et disposition des barres) qui respecte les exigences de l’Eurocode en termes de recouvrement, d’espacement et de protection contre la corrosion.
  6. Vérification de la Stabilité au Flambement : Assurez-vous que le poteau est stable contre le flambement en suivant les lignes directrices de l’Eurocode.

Correction : calcul des aciers d’un poteau :

1. Détermination des Charges de Calcul

Les charges de conception sont calculées en utilisant les combinaisons de charges selon l’Eurocode pour une situation de projet fréquente :

\[ G_d = \gamma_G \cdot G_k + \gamma_Q \cdot Q_k \] \[ G_d = 1.35 \cdot 200\, \text{kN} + 1.5 \cdot 100\, \text{kN} \] \[ G_d = 270\, \text{kN} + 150\, \text{kN} \] \[ G_d = 420\, \text{kN} \]

2. Calcul de l’Effort Axial

L’effort axial maximal, \(N_{Ed}\), que le poteau doit supporter est directement dérivé des charges de conception :

\[ N_{Ed} = 420\, \text{kN} \]

3. Vérification de la Section de Béton

La capacité axiale de la section de béton, \(N_{Rd}\), est calculée comme suit :

  • Surface de la section transversale, \(A_c\) :

\[ A_c = 300\, \text{mm} \times 300\, \text{mm} \] \[ A_c = 90000\, \text{mm}^2 \]

  • Résistance de calcul du béton, \(f_{cd}\) :

\[ f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} \] \[ f_{cd} = \frac{0.85 \times 25\, \text{MPa}}{1.5} \] \[ f_{cd} = 14.17\, \text{MPa} \]

Calcul de \(N_{Rd}\) :

\[ N_{Rd} = A_c \times f_{cd} \] \[ N_{Rd} = 90000\, \text{mm}^2 \times 14.17\, \text{MPa} \] \[ N_{Rd} = 1275300\, \text{kN} \cdot 10^{-3} \] \[ N_{Rd} = 1275.3\, \text{kN} \]

La section en béton est adéquate puisque \(N_{Rd} > N_{Ed}\).

4. Calcul des Aciers Nécessaires

Pour le calcul des aciers nécessaires, l’Eurocode spécifie un pourcentage minimal d’armature pour contrôler la fissuration et garantir la ductilité.

On considère donc un minimum d’acier :

\[ A_{s,min} = 0.001 \times A_c \] \[ A_{s,min} = 0.001 \times 90000\, \text{mm}^2 \] \[ A_{s,min} = 90\, \text{mm}^2 \]

5. Disposition des Armatures

On choisit des barres d’acier de diamètre 12 mm (section d’environ 113 mm² par barre), et on place une barre dans chaque coin de la section carrée du poteau, soit au minimum 4 barres :

\[ A_s = 4 \times 113\, \text{mm}^2 \] \[ A_s = 452\, \text{mm}^2 \]

Cette disposition respecte le minimum requis et assure une bonne répartition des armatures.

6. Vérification de la Stabilité au Flambement

Pour la stabilité au flambement, considérons un poteau avec des conditions d’encastrement aux deux extrémités.

La longueur effective, \(L_{eff}\), est égale à la hauteur du poteau :

\[ L_{eff} = 3.5\, \text{m} = 3500\, \text{mm} \]

Le moment d’inertie, \(I\), pour une section carrée est :

\[ I = \frac{b \cdot h^3}{12} \] \[ I = \frac{300\, \text{mm} \times (300\, \text{mm})^3}{12} \] \[ I = 6750000000\, \text{mm}^4 \]

Le rayon de giration, \(i\), est calculé à partir de :

\[ i = \sqrt{\frac{I}{A_c}} \] \[ i = \sqrt{\frac{6750000000\, \text{mm}^4}{90000\, \text{mm}^2}} \] \[ i \approx 273.9\, \text{mm} \]

L’élancement, \(\lambda\), est déterminé par :

\[ \lambda = \frac{L_{eff}}{i} \] \[ \lambda = \frac{3500\, \text{mm}}{273.9\, \text{mm}} \] \[ \lambda \approx 12.78 \]

Cette valeur d’élancement est nettement inférieure à celle qui induirait des préoccupations de flambement pour des colonnes en béton armé, indiquant que le poteau est stable contre le flambement sans nécessité de calculs supplémentaires détaillés de réduction de capacité due au flambement.

Calcul des aciers d’un poteau

D’autres exercices de béton armé :

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Module d’Young à partir d’un Essai de Traction

Module d'Young à partir d'un Essai de Traction Comprndre le Module d'Young à partir d'un Essai de Traction Une entreprise de construction doit vérifier les propriétés mécaniques du béton armé utilisé pour la construction d'un pont. Pour cela, elle procède à un essai...

Poutre en Béton Précontraint

Poutre en Béton Précontraint Comprendre le calcul de la poutre en béton précontraint: Vous êtes ingénieur(e) en structure au sein d'une société de construction. Votre projet actuel consiste à concevoir un pont routier qui comprend plusieurs poutres en béton...

Évaluation de la Conformité du Béton

Évaluation de la Conformité du Béton Comprendre l'Évaluation de la Conformité du Béton Vous êtes l'ingénieur de contrôle qualité sur le site de construction d'un nouveau pont. Le pont doit être construit avec des spécifications très strictes pour garantir sa longévité...

Calcul d’une poutre de redressement

Calcul d'une poutre de redressement Comprendre le calcul d'une poutre de redressement Un bureau d'ingénierie est chargé de concevoir une poutre de redressement en béton armé pour soutenir une dalle de plancher dans un bâtiment résidentiel. La poutre doit être conçue...

Calcul la Durabilité du Béton Armé

Calcul la Durabilité du Béton Armé Comprendre le Calcul la Durabilité du Béton Armé Vous êtes un ingénieur en structure chargé de concevoir un poteau en béton armé pour un bâtiment commercial situé dans une zone côtière. L'objectif est d'assurer la durabilité de ce...

Voile en béton armé dimensionnement

Voile en béton armé Dimensionnement Comprendre le Voile en béton armé Dimensionnement Objectif : Dimensionner un voile en béton armé soumis à des sollicitations verticales et horizontales. Données initiales Hauteur du voile H = 5 mLargeur du voile L = 3 mÉpaisseur...

Ferraillage semelle isolée

Ferraillage semelle isolée Comprendre le ferraillage semelle isolée : Vous êtes ingénieur en génie civil chargé de la conception et du ferraillage d’une semelle isolée pour une colonne d’un bâtiment R+4 (rez-de-chaussée plus quatre étages). La semelle doit répartir...

Calcul de la Section d’Armature d’une poutre

Calcul de la Section d'Armature d'une poutre Comprendre le Calcul de la Section d'Armature d'une poutre Vous êtes ingénieur(e) structure dans un bureau d'études et vous travaillez sur la conception d'un bâtiment résidentiel. Une des poutres principales de la...

Calcul des Efforts en Béton Précontraint

CALCUL DES EFFORTS EN BÉTON PRÉCONTRAINT Comprendre le calcul des efforts en béton précontraint Dans le cadre de la conception des structures, le calcul des efforts internes joue un rôle crucial pour assurer la sécurité et la performance des bâtiments.  Le béton...

Vérification de la Section de Précontrainte

Vérification de la Section de Précontrainte Comprendre la Vérification de la Section de Précontrainte Vous êtes ingénieur structure dans une entreprise de construction et devez concevoir une poutre en béton précontraint pour un nouveau projet de bâtiment. Cette poutre...