Pressions de Terre au Repos et en Mouvement

Pressions de Terre au Repos et en Mouvement

Comprendre les Pressions de Terre au Repos et en Mouvement

Vous êtes chargé de concevoir un mur de soutènement pour une tranchée de 6 mètres de profondeur destinée à l’installation de conduites souterraines.

Le sol est argileux, avec les caractéristiques suivantes :

  • Poids volumique du sol (\(\gamma\)) : 18 kN/m\(^3\)
  • Angle de frottement interne (\(\phi\)) : 25\(^\circ\)

Pour comprendre comment Vérifier le renversement d’un mur, cliquez sur le lien.

Objectifs:

L’objectif de cet exercice est de calculer les pressions des terres au repos, actives et passives sur le mur de soutènement. Ces calculs sont essentiels pour la conception du mur, afin d’assurer sa stabilité et sécurité.

Questions:

1. Pression au Repos (\(P_0\))

  • Calculez la pression au repos sur le mur de soutènement.

2. Pression Active (\(P_a\))

  • Déterminez la pression active exercée sur le mur en utilisant la formule de Rankine.
  • Calculez ensuite la force totale active (\(F_a\)) qui agit sur le mur et indiquez à quelle hauteur du bas du mur cette force est appliquée.

3. Pression Passive (\(P_p\))

  • Évaluez la pression passive potentielle en utilisant également la formule de Rankine.
  • Déterminez la force totale passive (\(F_p\)) et précisez la position de son point d’application sur le mur.

4. Discussion

  • Discutez l’importance de connaître les pressions au repos, actives et passives pour la conception et la construction de murs de soutènement.
  • Expliquez comment ces pressions influencent les décisions en matière de dimensionnement et de choix des matériaux pour le mur.

Correction : Pressions de Terre au Repos et en Mouvement

1. Pression au Repos (\(P_0\))

La pression au repos est donnée par la formule :

\[P_0 = \gamma \cdot H\]

En substituant les valeurs données :

\[P_0 = 18 \, \text{kN/m}^3 \times 6 \, \text{m} \] \[P_0 = 108 \, \text{kN/m}^2\]

2. Pression Active (\(P_a\))

La pression active de Rankine est calculée à l’aide de la formule :

\[ Pa = \gamma \cdot H \cdot K_a \]

où \(\text{Ka} = \tan^2(45^\circ – \phi/2)\).

D’abord, calculons \(\text{Ka}\) :

\[\text{Ka} = \tan^2(45^\circ – 25^\circ/2) \] \[\text{Ka} = \tan^2(32.5^\circ) \] \[\text{Ka} \approx 0.4873\]

Ensuite, calculons \(P_a\) :

\[ Pa = 18 \, \text{kN/m}^3 \times 6 \, \text{m} \times 0.4873 \] \[ Pa = 52.6 \, \text{kN/m}^2 \]

La force totale active sur le mur est obtenue par l’intégration de cette pression sur la hauteur du mur :

\[ Fa = \frac{1}{2} \cdot Pa \cdot H \] \[ Fa = \frac{1}{2} \cdot 52.6 \, \text{kN/m}^2 \cdot 6 \, \text{m} \] \[ Fa = 157.8 \, \text{kN} \]

Cette force agit à un tiers de la hauteur du mur à partir de sa base, soit à : \(2 \, \text{m}\)

3. Pression Passive (\(P_p\))

La pression passive de Rankine est calculée comme suit :

\[ Pp = \gamma \cdot H \cdot K_p \]

où \(\text{Kp} = \tan^2(45^\circ + \phi/2)\).

Calculons \(\text{Kp}\) :

\[\text{Kp} = \tan^2(45^\circ + 25^\circ/2) \] \[\text{Kp} = \tan^2(57.5^\circ) \] \[\text{Kp} \approx 3.2706\]

Calculons maintenant \(P_p\) :

\[ Pp = 18 \, \text{kN/m}^3 \times 6 \, \text{m} \times 3.2706 \] \[ Pp = 353.1 \, \text{kN/m}^2 \]

La force totale passive est :

\[ Fp = \frac{1}{2} \cdot Pp \cdot H \] \[ Fp = \frac{1}{2} \cdot 353.1 \, \text{kN/m}^2 \cdot 6 \, \text{m} \] \[ Fp = 1059.3 \, \text{kN} \]

Et, similairement, cette force agit également à un tiers de la hauteur du mur, soit à 2 m de la base.

4. Discussion

La compréhension des pressions au repos, actives et passives est fondamentale pour la conception et la construction de murs de soutènement.

Ces pressions, représentant les forces du sol, influencent directement le dimensionnement et le choix des matériaux du mur.

La pression au repos indique l’état initial du sol, la pression active détermine la force minimale que le mur doit résister pour éviter de céder, et la pression passive offre une contre-force pour augmenter la stabilité.

Une analyse précise de ces pressions permet de choisir les matériaux adaptés et d’appliquer les techniques de renforcement nécessaires, assurant la sécurité, la stabilité et l’économie des murs de soutènement dans diverses conditions environnementales.

Pressions de Terre au Repos et en Mouvement

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Analyse des forces en géotechnique

ANALYSE DES FORCES EN GÉOTECHNIQUE Comprendre l'analyse des forces en géotechnique : Vous êtes un ingénieur géotechnicien travaillant pour ABC Génie Civil. Votre mission est d'évaluer la stabilité d'une pente dans le cadre d'un projet de construction d'une route au...

Tassement et Consolidation d’une Fondation

Tassement et Consolidation d'une Fondation Comprendre le Tassement et Consolidation d'une Fondation Vous êtes ingénieur en génie civil et devez analyser le tassement potentiel d'un sol sous une nouvelle construction. La structure prévue est un petit immeuble de...

Facteur de Sécurité et Glissements de Terrain

Facteur de Sécurité et Glissements de Terrain Comprendre le Facteur de Sécurité et Glissements de Terrain Un projet de construction d'une route traverse une zone à risque de glissement de terrain située dans une région montagneuse. L'objectif est de réaliser une...

Calcul de la densité humide du sol

Calcul de la densité humide du sol Comprendre le Calcul de la densité humide du sol Vous êtes ingénieur géotechnique travaillant sur le site d'un futur complexe résidentiel. Le site est situé sur une ancienne zone agricole avec une variété de sols argileux et...

Calcul de la Densité Humide et Sèche du sol

Calcul de la Densité Humide et Sèche du sol Comprendre le Calcul de la Densité Humide et Sèche du sol Vous êtes un ingénieur géotechnicien travaillant sur le site de construction d'un futur bâtiment. Avant de commencer les travaux, vous devez évaluer les propriétés du...

Calcul de la force de renversement d’un mur

Calcul de la force de renversement d'un mur Comprendre le Calcul de la force de renversement d'un mur Un ingénieur géotechnique est chargé d'évaluer la stabilité d'un mur de soutènement qui retient un talus de terre. Le mur est soumis à diverses charges et contraintes...

Calcul de la masse volumique humide

Calcul de la masse volumique humide Comprendre le Calcul de la masse volumique humide Vous êtes un ingénieur géotechnique travaillant sur un projet de construction d'un grand complexe résidentiel. Avant de débuter la construction, il est crucial d'analyser les...

Calcul de la Pression de l’Eau dans le Sol

Calcul de la Pression de l'Eau dans le Sol Comprendre le Calcul de la Pression de l'Eau dans le Sol Vous travaillez en tant qu'ingénieur géotechnique sur un projet de construction d'une route à flanc de colline. Une partie de votre rôle est de déterminer la stabilité...

Analyse de la Compacité du Sol

Analyse de la Compacité du Sol Comprendre l'Analyse de la Compacité du Sol Vous êtes un ingénieur géotechnique travaillant sur la conception d'une nouvelle infrastructure dans une zone périurbaine. Le projet nécessite la construction d'une route qui doit traverser un...

Calcul du pourcentage des particules solides (S)

Calcul du pourcentage des particules solides (S) Comprendre le Calcul du pourcentage des particules solides (S) Vous êtes un ingénieur géotechnique chargé d'analyser la stabilité d'un terrain prévu pour la construction d'un nouveau bâtiment scolaire. Une des étapes...