Analyse des forces en géotechnique

ANALYSE DES FORCES EN GÉOTECHNIQUE

Comprendre l’analyse des forces en géotechnique :

Vous êtes un ingénieur géotechnicien travaillant pour ABC Génie Civil. Votre mission est d’évaluer la stabilité d’une pente dans le cadre d’un projet de construction d’une route au Parc national des Hautes-Montagnes.

L’objectif est de déterminer la stabilité de la pente et, si nécessaire, de proposer des mesures de stabilisation.

Pour comprendre l’Analyse de la stabilité d’une pente, cliquez sur le lien.

Données:

  • Hauteur de la pente (H): 15 m
  • Longueur de la pente (L): 30 m
  • Angle de pente (α): 45 degrés
  • Poids volumique du sol (γ): 18 kN/m³
  • Cohésion du sol (c): 15 kPa (Note: convertir en kN/m² pour vos calculs)
  • Angle de frottement interne du sol (φ): 30 degrés
  • Niveau de la nappe phréatique: 5 m sous la surface du sol
analyse des forces en géotechnique

Questions:

1. Force due au poids du sol:

Calculez la force parallèle à la pente due au poids du sol. Utilisez l’aire de la surface de la pente dans vos calculs et prenez en compte l’angle de la pente. Comment l’angle de la pente influence-t-il cette force?

2. Force de cohésion:

Déterminez la force de cohésion agissant le long de la surface potentielle de glissement. Considérez une tranche de 1 m de profondeur pour vos calculs. Comment la cohésion du sol contribue-t-elle à la stabilité de la pente?

3. Force de frottement:

Évaluez la force de frottement agissant le long de la surface de glissement. Prenez en compte le poids du sol normalement à la pente ainsi que l’angle de frottement interne du sol. Pourquoi cette force est-elle cruciale pour la stabilité de la pente?

4. Impact de la nappe phréatique:

a. Calculez la pression exercée par la nappe phréatique à sa profondeur.

b. Déterminez les forces horizontales et verticales résultantes de cette pression. Quel est l’effet de la nappe phréatique sur la stabilité de la pente?

Correction : Analyses des forces en géotechnique

1. Calcul de la Force due au Poids du Sol (P)

Pour déterminer la force due au poids du sol, nous calculons d’abord l’aire correcte de la surface inclinée de la pente, avec les paramètres suivants :

  • Hauteur de la pente (H) : 15 m
  • Longueur de la pente (L) : 30 m
  • Angle de la pente (\(\alpha\)) : 45 degrés

L’aire de la surface inclinée est calculée par :

\[ \text{Aire} = \frac{L \cdot H}{\cos(\alpha)} \] \[ \text{Aire} = \frac{30 \cdot 15}{\cos(45^\circ)} \] \[ \text{Aire} = 636.39 \, \text{m}^2 \]

La force due au poids du sol est alors calculée par :

\[ P = \gamma \cdot \text{Aire} \cdot \sin(\alpha) \] \[ P = 18 \cdot 636.39 \cdot \sin(45^\circ) \] \[ P = 8099.99 \, \text{kN} \]

2. Calcul de la Force de Cohésion (Fc)

La force de cohésion agit sur toute la surface de glissement et est calculée par :

\[ Fc = c \cdot \text{Aire} \] \[ Fc = 0.015 \cdot 636.39 \] \[ Fc = 9.55 \, \text{kN} \]

3. Calcul de la Force de Frottement (Ff)

La force de frottement est déterminée en prenant en compte le poids du sol agissant normalement à la pente et l’angle de frottement interne du sol :

\[ Ff = \gamma \cdot \text{Aire} \cdot \cos(\alpha) \cdot \tan(\phi) \] \[ Ff = 18 \cdot 636.39 \cdot \cos(45^\circ) \cdot \tan(30^\circ) \] \[ Ff = 4676.54 \, \text{kN} \]

4. Impact de la Nappe Phréatique

La nappe phréatique exerce une pression à sa profondeur, influençant les forces agissant sur la pente :

  • Profondeur de la nappe phréatique sous la surface (Hwater) : 5 m

Pression de l’eau (Peau) :

\[ = \gamma_{\text{water}} \cdot H_{\text{water}} \] \[ = 9.81 \cdot 5 = 49.05 \, \text{kN/m}^2 \]

Les forces résultantes dues à cette pression sont :

Force horizontale due à la nappe phréatique (Fheau) :

\[ = Peau \cdot L \] \[ = 49.05 \cdot 30 = 1471.5 \, \text{kN} \]

Force verticale due à la nappe phréatique (Fveau) :

\[ = Peau \cdot L \cdot \tan(\alpha) \] \[ = 49.05 \cdot 30 \cdot \tan(45^\circ) \] \[ = 1471.5 \, \text{kN} \]

Conclusion et Mesures de Stabilisation:

La présence de la nappe phréatique ajoute une pression significative, augmentant les risques de glissement de la pente.

Les mesures de stabilisation recommandées comprennent l’installation d’un système de drainage, l’utilisation de géotextiles ou de renforts géosynthétiques, et le terrassement pour réduire les forces de déstabilisation.

Analyse des forces en géotechnique

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Vérifier le renversement d’un mur

Vérifier le renversement d'un mur Comprendre comment vérifier le renversement d'un mur de soutènement Dans une zone résidentielle, un nouveau mur de soutènement doit être construit pour stabiliser un talus. Pour comprendre le Calcul de la Poussée des Terres, cliquez...

Calculer la contrainte effective d’un sol

Calculer la contrainte effective d'un sol Comprendre comment calculer la contrainte effective d'un sol Vous êtes un ingénieur géotechnique travaillant sur un site de construction. On vous demande de calculer la contrainte effective à une certaine profondeur dans un...

Analyse de la stabilité d’une pente

Analyse de la stabilité d’une pente Comprendre l'analyse de la stabilité d'une pente : Dans la région montagneuse de Valleflore, un nouveau projet de route est en cours de planification. Cette route doit traverser une pente qui a été identifiée comme potentiellement...

Calcul des Dimensions de la Semelle

Calcul des Dimensions de la Semelle Comprendre le calcul des Dimensions de la Semelle de Fondation Vous êtes un ingénieur civil chargé de concevoir une semelle de fondation pour un petit bâtiment. La semelle doit supporter une colonne centrale qui porte une charge...

Calcul de la pression interstitielle dans le sol

Calcul de la pression interstitielle dans le sol Comprendre le Calcul de la pression interstitielle dans le sol Vous êtes un ingénieur géotechnicien travaillant sur la construction d'une route. Lors d'une étape du projet, vous devez analyser le sol sous une section de...

Déterminer les caractéristiques des sols

Déterminer les caractéristiques des sols Comprendre comment déterminer les caractéristiques des sols : Vous êtes un ingénieur géotechnique chargé d'analyser un échantillon de sol prélevé sur un site de construction. L'échantillon a été récupéré à une profondeur de 3...

Évaluer les propriétés mécaniques sols

Évaluer les propriétés mécaniques sols Comprendre évaluer les propriétés mécaniques sols Un ingénieur géotechnique doit évaluer les propriétés mécaniques d'un sol pour un projet de construction. Le site est une zone argileuse avec des couches de sable. Pour comprendre...

Calcul la profondeur d’ancrage

Calcul la profondeur d'ancrage Comprendre le calcul la profondeur d'ancrage Vous êtes un ingénieur géotechnique chargé de déterminer la profondeur d'ancrage appropriée pour les fondations d'un nouveau bâtiment. Pourt comprendre le Calcul du Degré de Saturation du Sol,...

Tassement selon la Méthode de Terzaghi

Tassement selon la Méthode de Terzaghi Comprendre le calcul de Tassement selon la Méthode de Terzaghi Une couche d'argile saturée de 3 mètres d'épaisseur est située sous un remblai de 6 mètres de hauteur. La densité du remblai est de 1.8 g/cm³. Les propriétés de...

Résistance au Cisaillement d’un Sol

Résistance au Cisaillement d'un Sol Comprendre la Résistance au Cisaillement d'un Sol  Vous êtes un ingénieur en géotechnique chargé d'évaluer la capacité portante d'un terrain pour la construction d'une petite structure. Pour ce faire, vous décidez de réaliser un...