Forces de poussée et moment agissant

Forces de poussée et moment agissant (théorie de Rankine)

Comprendre les forces de poussée et moment agissant au bas d’un mur (théorie de Rankine)

Soit un mur de soutènement de hauteur h, retournant de la terre sur son côté gauche. La surface derrière le mur est plane.

Les caractéristiques du sol sont données par son angle de frottement interne \(\phi\) et sa masse volumique apparente \(\gamma\). Le mur a un frottement à sa base avec le sol décrit par l’angle \(\delta\).

Données :

\begin{align*}
h & = 5 \text{ m} \\
\phi & = 30^\circ \\
\gamma & = 18 \text{ kN/m}^3 \\
\delta & = 20^\circ
\end{align*}

Pour comprendre la Pressions de Terre au Repos et en Mouvement, cliquez sur lien.

Questions:

1. Poussée de terre active (Ea) selon Rankine:
Utilisez la théorie de Rankine pour déterminer la poussée de terre active maximale au bas du mur.

2. Position de la ligne d’action de la poussée active:
Calculez la distance \(z\) du bas du mur au point d’application de la force de poussée active.

3. Moment agissant au bas du mur:
Calculez le moment exercé par la poussée active au bas du mur.

Correction : forces de poussée et moment agissant

1. Poussée de Terre Active (Ea) selon Rankine

Pour déterminer la poussée de terre active maximale au bas du mur, nous commençons par calculer le coefficient de poussée de terre actif (\(Ka\)) avec la formule :

\[ Ka = \tan^2 \left( 45^\circ – \frac{\phi}{2} \right) \]

En substituant \(\phi = 30^\circ\) :

\[ Ka = \tan^2 \left( 45^\circ – 15^\circ \right) \] \[ Ka = \tan^2(30^\circ) \approx 0.333 \]

La poussée active est ensuite calculée à l’aide de la formule corrigée :

\[ Ea = \frac{1}{2} \gamma h^2 Ka \]

En substituant les valeurs :

\[ Ea = \frac{1}{2} \times 18 \, \text{kN/m}^3 \times (5 \, \text{m})^2 \times 0.333 \] \[ Ea \approx 75 \, \text{kN/m} \]

2. Position de la Ligne d’Action de la Poussée Active

La distance \(z\) du bas du mur au point d’application de la force de poussée active, pour un mur de soutènement selon la théorie de Rankine, est habituellement à \(\frac{h}{3}\) de la base. Ainsi :

\[ z = \frac{h}{3} \]

En substituant \(h = 5 \, \text{m}\) :

\[ z = \frac{5 \, \text{m}}{3} \approx 1.67 \, \text{m} \]

3. Moment Agissant au Bas du Mur

Le moment \(M\) exercé par la poussée active au bas du mur est calculé à l’aide de la formule :

\[ M = Ea \times z \]

En utilisant les valeurs corrigées pour \(Ea\) et \(z\) :

\[ M = 75 \, \text{kN/m} \times 1.67 \, \text{m} \] \[ M \approx 125 \, \text{kN}\cdot\text{m} \]

Conclusion:

La poussée de terre active maximale au bas du mur est d’environ \(75 \, \text{kN/m}\), avec le point d’application de cette force situé à environ \(1.67 \, \text{m}\) du bas.

Le moment agissant au bas du mur, en conséquence de cette poussée, est d’environ \(125 \, \text{kN}\cdot\text{m}\).

Forces de poussée et moment agissant

D’autres exercices de géotechnique :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Analyse des forces en géotechnique

ANALYSE DES FORCES EN GÉOTECHNIQUE Comprendre l'analyse des forces en géotechnique : Vous êtes un ingénieur géotechnicien travaillant pour ABC Génie Civil. Votre mission est d'évaluer la stabilité d'une pente dans le cadre d'un projet de construction d'une route au...

Tassement et Consolidation d’une Fondation

Tassement et Consolidation d'une Fondation Comprendre le Tassement et Consolidation d'une Fondation Vous êtes ingénieur en génie civil et devez analyser le tassement potentiel d'un sol sous une nouvelle construction. La structure prévue est un petit immeuble de...

Facteur de Sécurité et Glissements de Terrain

Facteur de Sécurité et Glissements de Terrain Comprendre le Facteur de Sécurité et Glissements de Terrain Un projet de construction d'une route traverse une zone à risque de glissement de terrain située dans une région montagneuse. L'objectif est de réaliser une...

Calcul de la densité humide du sol

Calcul de la densité humide du sol Comprendre le Calcul de la densité humide du sol Vous êtes ingénieur géotechnique travaillant sur le site d'un futur complexe résidentiel. Le site est situé sur une ancienne zone agricole avec une variété de sols argileux et...

Calcul de la Densité Humide et Sèche du sol

Calcul de la Densité Humide et Sèche du sol Comprendre le Calcul de la Densité Humide et Sèche du sol Vous êtes un ingénieur géotechnicien travaillant sur le site de construction d'un futur bâtiment. Avant de commencer les travaux, vous devez évaluer les propriétés du...

Calcul de la force de renversement d’un mur

Calcul de la force de renversement d'un mur Comprendre le Calcul de la force de renversement d'un mur Un ingénieur géotechnique est chargé d'évaluer la stabilité d'un mur de soutènement qui retient un talus de terre. Le mur est soumis à diverses charges et contraintes...

Calcul de la masse volumique humide

Calcul de la masse volumique humide Comprendre le Calcul de la masse volumique humide Vous êtes un ingénieur géotechnique travaillant sur un projet de construction d'un grand complexe résidentiel. Avant de débuter la construction, il est crucial d'analyser les...

Calcul de la Pression de l’Eau dans le Sol

Calcul de la Pression de l'Eau dans le Sol Comprendre le Calcul de la Pression de l'Eau dans le Sol Vous travaillez en tant qu'ingénieur géotechnique sur un projet de construction d'une route à flanc de colline. Une partie de votre rôle est de déterminer la stabilité...

Analyse de la Compacité du Sol

Analyse de la Compacité du Sol Comprendre l'Analyse de la Compacité du Sol Vous êtes un ingénieur géotechnique travaillant sur la conception d'une nouvelle infrastructure dans une zone périurbaine. Le projet nécessite la construction d'une route qui doit traverser un...

Calcul du pourcentage des particules solides (S)

Calcul du pourcentage des particules solides (S) Comprendre le Calcul du pourcentage des particules solides (S) Vous êtes un ingénieur géotechnique chargé d'analyser la stabilité d'un terrain prévu pour la construction d'un nouveau bâtiment scolaire. Une des étapes...