Critère de Rupture de Mohr-Coulomb

Critère de Rupture de Mohr-Coulomb

Comprendre le Critère de Rupture de Mohr-Coulomb

Vous êtes chargé d’évaluer la stabilité d’un talus formé d’un sol dont la cohésion (c) est de 25 kPa et l’angle de frottement interne (\(\phi\)) est de 30°.

Le talus a une hauteur (h) de 10 m et le poids volumique du sol (\(\gamma\)) est de 18 kN/m³. On vous demande de calculer la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)) que le sol peut supporter au pied du talus, en supposant une condition de charge sans surcharge externe.

Pour comprendre le calcul des Contraintes de Sol par le Cercle de Mohr, cliquez sur le lien.

Données :

  • Cohésion (\(c\)): 25 kPa
  • Angle de frottement interne (\(\phi\)): 30°
  • Hauteur du talus (\(h\)): 10 m
  • Poids volumique du sol (\(\gamma\)): 18 kN/m³

Questions:

1. Calcul de la contrainte normale au pied du talus

2. Calcul de la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)):
En utilisant le critère de Mohr-Coulomb, on peut déterminer la contrainte de cisaillement maximale.

Correction : Critère de Rupture de Mohr-Coulomb

1. Calcul de la Contrainte Normale (\(\sigma\))

La contrainte normale au pied du talus est déterminée par le poids du sol au-dessus, qui dépend de la hauteur du talus (\(h\)) et du poids volumique du sol (\(\gamma\)).

La formule pour calculer cette contrainte est:

\[ \sigma = \gamma \cdot h \]

En substituant les valeurs données:

\[ \sigma = 18 \, \text{kN/m}^3 \times 10 \, \text{m} \] \[ \sigma = 180 \, \text{kPa} \]

La contrainte normale (\(\sigma\)) au pied du talus est donc de 180 kPa.

2. Calcul de la Contrainte de Cisaillement Maximale (\(\tau_{\text{max}}\))

Le critère de Mohr-Coulomb définit la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)) que le sol peut supporter avant la rupture par la formule suivante:

\[ \tau_{\text{max}} = c + \sigma \tan(\phi) \]

où \(c\) est la cohésion du sol, \(\sigma\) est la contrainte normale calculée à l’étape 1, et \(\phi\) est l’angle de frottement interne. Avant de procéder au calcul, convertissons l’angle de frottement interne de degrés en radians, car la fonction trigonométrique \(\tan()\) requiert que l’angle soit en radians.

\[ \phi_{\text{rad}} = \phi_{\text{deg}} \times \frac{\pi}{180} \] \[ \phi_{\text{rad}} = 30^\circ \times \frac{\pi}{180} \] \[ \phi_{\text{rad}} = \frac{\pi}{6} \, \text{radians} \]

Maintenant, substituons toutes les valeurs dans la formule de \(\tau_{\text{max}}\):

\[ \tau_{\text{max}} = 25 \, \text{kPa} + 180 \, \text{kPa} \times \tan\left(\frac{\pi}{6}\right) \] \[ \tau_{\text{max}} = 25 \, \text{kPa} + 180 \, \text{kPa} \times \tan(30^\circ) \] \[ \tau_{\text{max}} = 25 \, \text{kPa} + 180 \, \text{kPa} \times 0.577 \] \[
\tau_{\text{max}} = 128.92 \, \text{kPa} \]

Conclusion:

Le calcul montre que la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)) que le sol peut supporter au pied du talus est de 128.92 kPa.

Cette valeur est cruciale pour déterminer la stabilité du talus. Si la contrainte de cisaillement due au poids du talus et d’autres facteurs externes dépasse cette valeur, le talus pourrait être sujet à un glissement ou à une rupture, indiquant un besoin potentiel de mesures de stabilisation.

Critère de Rupture de Mohr-Coulomb

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul des Pressions au Sol pour un Bâtiment

Calcul des Pressions au Sol pour un Bâtiment Comprendre le Calcul des Pressions au Sol pour un Bâtiment Dans le cadre de la construction d'un nouveau bâtiment commercial, une évaluation géotechnique est nécessaire pour déterminer si le sol sur le site peut supporter...

Calcul du Poids Spécifique du Sol

Calcul du Poids Spécifique du Sol Comprendre le Calcul du Poids Spécifique du Sol Vous êtes ingénieur en géotechnique travaillant sur le site de construction d'un futur immeuble de bureaux. Pour assurer la stabilité de la structure, vous devez calculer le poids...

Calcul du Coefficient de Consolidation

Calcul du Coefficient de Consolidation Comprendre le Calcul du Coefficient de Consolidation Vous êtes un ingénieur géotechnique chargé d'analyser un échantillon de sol argileux prélevé sur un site de construction. L'objectif est de déterminer le coefficient de...

Évaluation des propriétés d’un sol

Évaluation des propriétés d'un sol Comprendre l'évaluation des propriétés d'un sol : Vous êtes un ingénieur géotechnique chargé d'évaluer les propriétés d'un sol argileux pour un projet de construction. Un site a été choisi, et des échantillons de sol ont été prélevés...

Classification des sols selon USCS

Classification des sols selon USCS Contexte sur la classification des sols selon USCS : Vous avez été chargé d'analyser un échantillon de sol pour déterminer sa classification selon l'USCS. Vous disposez des résultats suivants issus des tests de laboratoire : -...

Fondation pour bâtiment en zone sismique

Fondation pour bâtiment en zone sismique Comprendre le calcul de fondation pour batiment en zone sismique Vous êtes un ingénieur en génie civil chargé de concevoir la fondation d'un bâtiment de bureaux de 5 étages dans une zone à risque sismique modéré. Le bâtiment...

Calcul de l’Optimum de Proctor

Calcul de l'Optimum de Proctor Comprendre le Calcul de l'Optimum de Proctor Dans le cadre de la construction d'une nouvelle route dans une région rurale, il est nécessaire d'évaluer la compacité du sol pour s'assurer de la stabilité de l'infrastructure. L'optimum de...

Analyse des forces en géotechnique

ANALYSE DES FORCES EN GÉOTECHNIQUE Comprendre l'analyse des forces en géotechnique : Vous êtes un ingénieur géotechnicien travaillant pour ABC Génie Civil. Votre mission est d'évaluer la stabilité d'une pente dans le cadre d'un projet de construction d'une route au...

Tassement et Consolidation d’une Fondation

Tassement et Consolidation d'une Fondation Comprendre le Tassement et Consolidation d'une Fondation Vous êtes ingénieur en génie civil et devez analyser le tassement potentiel d'un sol sous une nouvelle construction. La structure prévue est un petit immeuble de...

Facteur de Sécurité et Glissements de Terrain

Facteur de Sécurité et Glissements de Terrain Comprendre le Facteur de Sécurité et Glissements de Terrain Un projet de construction d'une route traverse une zone à risque de glissement de terrain située dans une région montagneuse. L'objectif est de réaliser une...