Contraintes de Sol par le Cercle de Mohr

Contraintes de Sol par le Cercle de Mohr

Comprendre les Contraintes de Sol par le Cercle de Mohr

Vous êtes un ingénieur géotechnique chargé d’analyser les contraintes dans un échantillon de sol prélevé sur un site de construction prévu pour un immeuble de bureaux.

L’échantillon de sol est soumis à un test triaxial pour déterminer ses propriétés mécaniques, notamment sa résistance au cisaillement. Les résultats du test vous fournissent les contraintes principales appliquées sur l’échantillon.

Votre tâche est de déterminer les contraintes normales et de cisaillement maximales agissant sur l’échantillon de sol à l’aide du cercle de Mohr.

Pour comprendre le calcul de la Résistance au Cisaillement d’un Sol, cliquez sur le lien.

Données:

  • Contrainte principale majeure (\(\sigma_1\)): 150 kPa
  • Contrainte principale mineure (\(\sigma_3\)): 50 kPa
  • Orientation de l’échantillon: La contrainte principale majeure est verticale.

Questions:

1. Dessiner le cercle de Mohr pour l’échantillon de sol.
2. Calculer la contrainte normale maximale (\(\sigma_{\text{max}}\)).
3. Calculer la contrainte de cisaillement maximale (\(\tau_{\text{max}}\)).
4. Déterminer l’orientation des plans sur lesquels ces contraintes maximales agissent.

Correction : Contraintes de Sol par le Cercle de Mohr

1. Cercle de Mohr pour l’échantillon de sol.

A. Calcul du centre et du rayon du cercle de Mohr

Pour un élément de sol soumis à des contraintes principales \(\sigma_1\) (majeure) et \(\sigma_3\) (mineure), le cercle de Mohr permet de déterminer graphiquement les contraintes agissant sur des plans inclinés par rapport aux axes principaux.

Centre \(C\) du cercle

Le centre du cercle est situé à une contrainte normale moyenne entre les deux contraintes principales.

Il est calculé comme la moyenne de \(\sigma_1\) et \(\sigma_3\).

\[ C = \frac{\sigma_1 + \sigma_3}{2} \] \[
C = \frac{150 + 50}{2} \] \[ C = 100 \, \text{kPa} \]

Rayon \(R\) du cercle

Le rayon du cercle correspond à la moitié de la différence entre les contraintes principales, représentant la variation maximale de la contrainte de cisaillement.

\[ R = \frac{\sigma_1 – \sigma_3}{2} \] \[
R = \frac{150 – 50}{2} \] \[ R = 50 \, \text{kPa} \]

Cercle de Mohr

2. Calcul de la contrainte normale maximale \(\sigma_{max}\)

La contrainte normale maximale agissant sur l’échantillon est trouvée en ajoutant le rayon du cercle au centre.

\[ \sigma_{max} = C + R \]

Cela donne

\[ \sigma_{max} = 100 + 50 \] \[ \sigma_{max} = 150 \, \text{kPa} \]

qui est égale à la contrainte principale majeure \(\sigma_1\), comme attendu pour cet état de contrainte.

3. Calcul de la contrainte de cisaillement maximale \(\tau_{max}\)

La contrainte de cisaillement maximale est égale au rayon du cercle de Mohr, car c’est la valeur maximale que la contrainte de cisaillement peut atteindre pour n’importe quelle orientation du plan de coupe dans l’échantillon.

\[ \tau_{max} = R = 50 \, \text{kPa} \]

4. Détermination de l’orientation des plans

Les contraintes maximales (normale et de cisaillement) agissent sur des plans orientés à 45° par rapport aux directions des contraintes principales.

Cela est dû à la géométrie du cercle de Mohr, où un déplacement angulaire de \(2\theta\) sur le cercle correspond à une rotation physique de \(\theta\) dans l’échantillon de sol.

Résumé de la Correction

Le centre du cercle de Mohr (\(C\)) se trouve à 100 kPa, et son rayon (\(R\)) est de 50 kPa. La contrainte normale maximale (\(\sigma_{max}\)) est de 150 kPa, correspondant à la contrainte principale majeure.

La contrainte de cisaillement maximale (\(\tau_{max}\)) est de 50 kPa et se produit sur des plans inclinés à 45° par rapport aux axes principaux de contrainte.

Contraintes de Sol par le Cercle de Mohr

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Vérifier le renversement d’un mur

Vérifier le renversement d'un mur Comprendre comment vérifier le renversement d'un mur de soutènement Dans une zone résidentielle, un nouveau mur de soutènement doit être construit pour stabiliser un talus. Pour comprendre le Calcul de la Poussée des Terres, cliquez...

Calculer la contrainte effective d’un sol

Calculer la contrainte effective d'un sol Comprendre comment calculer la contrainte effective d'un sol Vous êtes un ingénieur géotechnique travaillant sur un site de construction. On vous demande de calculer la contrainte effective à une certaine profondeur dans un...

Analyse de la stabilité d’une pente

Analyse de la stabilité d’une pente Comprendre l'analyse de la stabilité d'une pente : Dans la région montagneuse de Valleflore, un nouveau projet de route est en cours de planification. Cette route doit traverser une pente qui a été identifiée comme potentiellement...

Calcul des Dimensions de la Semelle

Calcul des Dimensions de la Semelle Comprendre le calcul des Dimensions de la Semelle de Fondation Vous êtes un ingénieur civil chargé de concevoir une semelle de fondation pour un petit bâtiment. La semelle doit supporter une colonne centrale qui porte une charge...

Calcul de la pression interstitielle dans le sol

Calcul de la pression interstitielle dans le sol Comprendre le Calcul de la pression interstitielle dans le sol Vous êtes un ingénieur géotechnicien travaillant sur la construction d'une route. Lors d'une étape du projet, vous devez analyser le sol sous une section de...

Déterminer les caractéristiques des sols

Déterminer les caractéristiques des sols Comprendre comment déterminer les caractéristiques des sols : Vous êtes un ingénieur géotechnique chargé d'analyser un échantillon de sol prélevé sur un site de construction. L'échantillon a été récupéré à une profondeur de 3...

Évaluer les propriétés mécaniques sols

Évaluer les propriétés mécaniques sols Comprendre évaluer les propriétés mécaniques sols Un ingénieur géotechnique doit évaluer les propriétés mécaniques d'un sol pour un projet de construction. Le site est une zone argileuse avec des couches de sable. Pour comprendre...

Calcul la profondeur d’ancrage

Calcul la profondeur d'ancrage Comprendre le calcul la profondeur d'ancrage Vous êtes un ingénieur géotechnique chargé de déterminer la profondeur d'ancrage appropriée pour les fondations d'un nouveau bâtiment. Pourt comprendre le Calcul du Degré de Saturation du Sol,...

Tassement selon la Méthode de Terzaghi

Tassement selon la Méthode de Terzaghi Comprendre le calcul de Tassement selon la Méthode de Terzaghi Une couche d'argile saturée de 3 mètres d'épaisseur est située sous un remblai de 6 mètres de hauteur. La densité du remblai est de 1.8 g/cm³. Les propriétés de...

Résistance au Cisaillement d’un Sol

Résistance au Cisaillement d'un Sol Comprendre la Résistance au Cisaillement d'un Sol  Vous êtes un ingénieur en géotechnique chargé d'évaluer la capacité portante d'un terrain pour la construction d'une petite structure. Pour ce faire, vous décidez de réaliser un...