Calcul d’une poutre en bois

Calcul d’une poutre en bois

Comprendre le calcul d’une poutre en bois :

Vous êtes ingénieur structure dans une entreprise de construction. Votre projet actuel implique la conception d’une structure résidentielle en bois.

Vous devez calculer les dimensions et la capacité portante d’une poutre principale en bois qui soutiendra le plancher d’un étage.

Données :

  • Matériau de la poutre : Bois de pin
  • Longueur de la poutre : 6 mètres
  • Charge permanente : 1.5 kN/m² (inclut le poids de la structure, plancher, etc.)
  • Charge variable : 2.0 kN/m² (mobilier, occupants)
  • Coefficient de sécurité : Selon Eurocode

Objectifs de l’exercice :

  1. Calcul de la Charge Totale : Calculez la charge totale que la poutre doit supporter en considérant les charges permanentes et variables.
  2. Sélection du Type de Bois et Dimensionnement : En vous basant sur les propriétés du bois de pin et les normes Eurocode, déterminez la section transversale appropriée de la poutre.
  3. Vérification de la Résistance et Déformation : Assurez-vous que la poutre choisie respecte les critères de résistance et de déformation sous les charges appliquées, conformément à Eurocode 5.
  4. Analyse de la Sécurité : Évaluez la sécurité de la poutre en appliquant le coefficient de sécurité Eurocode.

Correction : Calcul d’une poutre en bois

1. Calcul des Charges

  • Charge permanente : 1.5 \, \text{kN/m}^2
  • Charge variable : 2.0 \, \text{kN/m}^2
  • Longueur de la poutre : 6 \, \text{m}

Charge totale par mètre de longueur : = 1.5 + 2.0 = 3.5 \, \text{kN/m}^2

Charge totale sur la poutre :

    \[ = 3.5 \, \text{kN/m}^2 \times 6 \, \text{m} \]

    \[ = 21 \, \text{kN} \]

2. Dimensionnement de la Poutre

Supposons une largeur de poutre (b) de 150 mm et un module d’élasticité (E) du bois de pin de 11,000 MPa.

Moment maximal (M) :

    \[ M = \frac{21 \, \text{kN} \times 3 \, \text{m}}{4} \]

    \[ M = 15.75 \, \text{kNm} \]

Module de résistance (W) nécessaire :

    \[ W = \frac{M \times 1.5}{f_m} \]

    \[ W = \frac{15750 \times 1.5}{24} \]

    \[ W = 982.8125 \, \text{cm}^3 \]

Hauteur de la poutre (h) :

    \[ h = \sqrt{\frac{6W}{b}} \]

    \[ h = \sqrt{\frac{6 \times 982.8125}{15}} \]

    \[ h = 20.18 \, \text{cm} \]

3. Vérification de la Résistance

La résistance à la flexion (f_m) pour le bois de pin est de 24 MPa.

Contrainte de flexion (σ) :

    \[ \sigma = \frac{M}{W} \]

    \[ \sigma = \frac{15750}{982.8125} \]

    \[ \sigma = 16.02 \, \text{MPa} \]

La contrainte de flexion est inférieure à la résistance à la flexion du bois de pin, ce qui signifie que la poutre est suffisamment résistante.

4. Vérification de la Déformation

Le moment d’inertie (I) pour une section rectangulaire est \frac{bh^3}{12} :

    \[ I = \frac{15 \times 20.18^3}{12} \]

    \[ I = 10293.35 \, \text{cm}^4 \]

La déformation maximale (\delta) est :

    \[ \delta = \frac{5ql^4}{384EI} \]

    \[ \delta = \frac{5 \times 3.5 \times 600^4}{384 \times 11000 \times 10293.35} \]

    \[ \delta = 0.527 \, \text{cm} \]

5. Analyse de la Sécurité avec Coefficients de Sécurité Eurocode

    Charge Totale Appliquée avec Coefficients de Sécurité

    • Charge permanente majorée :

        \[ = 1.5 \, \text{kN/m}^2 \times 1.35 \]

        \[ = 2.025 \, \text{kN/m}^2 \]

    • Charge variable majorée :

        \[ = 2.0 \, \text{kN/m}^2 \times 1.5 \]

        \[ = 3.0 \, \text{kN/m}^2 \]

    Charge totale majorée par mètre de longueur :

        \[ = 2.025 + 3.0 \]

        \[ = 5.025 \, \text{kN/m}^2 \]

    Charge totale majorée sur la poutre :

        \[ = 5.025 \, \text{kN/m}^2 \times 6 \, \text{m} \]

        \[ = 30.15 \, \text{kN} \]

    Moment maximal majoré (M_majoré) :

        \[ M\_majoré = \frac{30.15 \, \text{kN} \times 3 \, \text{m}}{4} \]

        \[ M\_majoré = 22.6125 \, \text{kNm} \]

    Contrainte de flexion avec charge majorée (σ_majoré) :

        \[ \sigma\_majoré = \frac{M\_majoré}{W} \]

        \[ \sigma\_majoré  = \frac{22612.5}{982.8125} \]

        \[ \sigma\_majoré = 23.02 \, \text{MPa} \]

    La contrainte de flexion avec la charge majorée est inférieure à la résistance à la flexion du bois de pin (24 MPa), indiquant que la poutre est suffisamment résistante même avec le coefficient de sécurité appliqué.

    Conclusion

    • Dimension de la poutre : Une hauteur d’environ 20.18 cm pour une largeur de 15 cm est nécessaire.
    • Déformation : La déformation maximale sous la charge est de 0.527 cm, ce qui est généralement acceptable pour les structures en bois.
    • Résistance : La poutre présente une résistance adéquate, avec une contrainte de flexion de 16.02 MPa, inférieure à la résistance à la flexion du bois de pin (24 MPa).
    • Sécurité : Avec les coefficients de sécurité appliqués, la poutre répond toujours aux exigences de sécurité selon les normes Eurocode 5.

    Calcul d’une poutre en bois

    D’autres exercices de structure en bois :

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Résonance d’une Poutre en Bois

    Résonance d'une Poutre en Bois Comprendre la Résonance d'une Poutre en Bois Un ingénieur en structure est chargé de concevoir un auditorium en bois qui sera utilisé pour des concerts et des conférences. Pour assurer le confort acoustique et la sécurité structurelle,...

    Analyse d’un Système de Plancher en Bois

    Analyse d'un Système de Plancher en Bois Comprendre l'Analyse d'un Système de Plancher en Bois Vous êtes chargé de concevoir un système de plancher pour une construction résidentielle en bois. Le bâtiment a une portée de plancher de 6 mètres et une largeur de 8...

    Résistance et Rigidité d’une Poutre en Bois

    Résistance et Rigidité d'une Poutre en Bois Comprendre la Résistance et Rigidité d'une Poutre en Bois Vous êtes chargé de concevoir une poutre en bois pour une petite structure résidentielle. La poutre doit supporter une charge uniformément répartie et vous devez...

    Évaluation de la Résistance au Feu

    Évaluation de la Résistance au Feu Comprendre l'évaluation de la Résistance au Feu d'une Poutre en Bois Une poutre en bois d'épicéa est utilisée dans la construction d'un bâtiment résidentiel. La poutre a des dimensions initiales de 200 mm x 300 mm et une longueur de...

    Caractéristiques mécanique du bois

    Caractéristiques mécanique du bois Comprendre les caractéristiques mécanique du bois : Vous êtes chargé de concevoir une poutre en bois pour une structure résidentielle. Cette poutre doit supporter une charge uniformément répartie (y compris son propre poids) et...

    Calcul les charges d’une passerelle

    Calcul les charges d'une passerelle Comprendre le Calcul les charges d'une passerelle Une passerelle en bois a une longueur de 10 mètres et une largeur de 2 mètres. Le bois utilisé pour la construction a une densité de 600 kg/m³. La passerelle est conçue pour...

    Connexion boulonnée pour charpente bois

    Connexion boulonnée pour charpente bois Comprendre le calcul de la connexion boulonnée pour charpente bois : Concevez une connexion boulonnée pour relier deux éléments de charpente en bois dans un bâtiment résidentiel. Les charges appliquées sont principalement dues...

    Effets de l’humidité sur le bois

    Effets de l’humidité sur le bois Comprendre les effets de l'humidité sur le bois: Un morceau de bois a une longueur initiale de 100 cm, une largeur de 20 cm et une épaisseur de 5 cm. Le taux d'humidité initial du bois est de 12%. Le bois est ensuite exposé à un...

    Calcul la résistance d’une planche de bois

    Calcul la résistance d'une planche de bois Comprendre le calcul de la résistance d'une planche de bois Objectif de l'exercice: L'étudiant doit déterminer si une planche de bois peut supporter une charge spécifique sans se rompre. Données de l'exercice: Matériau de la...

    Section structure en bois

    Section d'une structure en bois Etude de cas de section d'une structure en bois Ingénieur(e) en génie civil, votre spécialisation dans le calcul structure bois au sein d'un bureau d'étude vous amène à concevoir une poutre capable de supporter une charge concentrée...