Vérification de la résistance à la compression

Vérification de la résistance à la compression

Comprendre la Vérification de la résistance à la compression

Vous êtes ingénieur(e) en structure dans une entreprise de construction et vous travaillez sur la conception d’un bâtiment résidentiel.

L’une des poutres principales du rez-de-chaussée, qui supportera plusieurs étages, doit être conçue pour garantir la sécurité et la stabilité de la structure.

Vous devez vérifier si la section de poutre proposée peut résister aux charges de compression prévues sans dépassement de sa capacité.

Pour comprendre le calcul de la Contrainte de Compression dans un Pilier, cliquez sur le lien.

Données:

  • Matériaux:
    • Béton: C25/30 (résistance caractéristique à la compression de 25 MPa, résistance moyenne à la compression de 30 MPa)
    • Acier: B500B (résistance caractéristique à la traction de 500 MPa)
  • Section de la poutre:
    • Largeur: 300 mm
    • Hauteur: 500 mm
  • Armature:
    • Nombre de barres en acier en tension: 4
    • Diamètre des barres en acier: 16 mm
  • Charges:
    • Charge permanente (G): 150 kN
    • Charge variable (Q): 90 kN

Questions:

1. Calcul de l’aire d’acier (As):
Calculer l’aire des barres d’acier en tension dans la section transversale de la poutre.

2. Calcul du moment de résistance ultime (MRd):
Utiliser la méthode des sections pour déterminer le moment de résistance ultime de la section de poutre en béton armé. Considérer un coefficient partiel de sécurité pour le béton (\(\gamma_c\)) de 1,5 et pour l’acier (\(\gamma_s\)) de 1,15.

3. Calcul de la charge ultime (Fu):
Calculer la charge ultime que la poutre peut supporter en utilisant les valeurs de charge permanente et variable données, en considérant les facteurs de charge selon les normes applicables (par exemple, 1,35 pour G et 1,5 pour Q pour l’Eurocode).

4. Vérification de la capacité portante:
Vérifier si le moment de résistance ultime (MRd) est supérieur ou égal au moment provoqué par la charge ultime (Mu). Cela indique si la section de la poutre est adéquate pour résister aux charges appliquées sans dépassement de sa capacité.

Correction : Vérification de la résistance à la compression

1. Calcul de l’Aire d’Acier (\(A_s\))

L’aire des barres d’acier est calculée par la formule de l’aire d’un cercle (\(\pi r^2\)), multipliée par le nombre de barres.

\[ A_s = n \cdot \pi \cdot \left(\frac{d}{2}\right)^2 \] \[ A_s = 4 \cdot \pi \cdot \left(\frac{16}{2}\right)^2 \] \[ A_s = 804.25 \, mm^2 \]

2. Calcul du Moment de Résistance Ultime (\(M_{Rd}\))

Le moment de résistance ultime est calculé en prenant en compte la résistance de l’acier ajustée par le facteur de sécurité, la distance utile de la section (d), et la hauteur de l’axe neutre (a).

\[ M_{Rd} = A_s \cdot f_{yd} \cdot (d – a) \] \[ M_{Rd} = 804.25 \cdot \frac{500}{1.15} \cdot (450 – 225) / 1e6 \]  \[ M_{Rd} = 78.68 \, kNm \]

3. Calcul de la Charge Ultime (\(F_u\)) et du Moment dû à la Charge Ultime (\(M_u\))

La charge ultime est déterminée en appliquant les facteurs de charge aux charges permanente et variable.

\[ F_u = G \cdot \gamma_G + Q \cdot \gamma_Q \] \[ F_u = 150 \cdot 1.35 + 90 \cdot 1.5 \] \[ F_u = 337.5 \, kN \]

Le moment dû à la charge ultime, avec une portée (l) de 5 m, est calculé comme suit :

\[ M_u = F_u \cdot l / 8 \] \[ M_u = 337.5 \cdot 5000 / 8 / 1e3 \] \[ M_u = 210.94 \, kNm \]

4. Vérification de la Capacité Portante

La comparaison entre le moment de résistance ultime (\(M_{Rd}\)) et le moment dû à la charge ultime (\(M_u\)) montre si la section de poutre est adéquate.

  • \( M_{Rd} = 78.68 \, kNm \)
  • \( M_u = 210.94 \, kNm \)

Puisque \(M_{Rd} < M_u\), la poutre ne peut pas supporter les charges appliquées sans dépassement de sa capacité.

Conclusion:

La section de poutre proposée est insuffisante pour résister aux charges définies, nécessitant une révision de sa conception.

Pour répondre aux exigences, il est conseillé d’augmenter les dimensions de la poutre, d’ajouter plus d’armatures, ou d’opter pour un béton de qualité supérieure, en vue d’augmenter sa capacité portante.

Cette démarche assure la sécurité et la stabilité de la structure conformément aux normes de construction applicables.

Vérification de la résistance à la compression

D’autres exercices de béton armé:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Descente des charges

Descente des charges Comprendre la descente des charges Vous êtes ingénieur en structure et vous travaillez sur la conception d'un bâtiment de bureaux de trois étages. La structure principale est en béton armé. Votre tâche est de calculer la descente des charges...

Calcul du Nombre de Poutres pour Plancher

Calcul du Nombre de Poutres pour Plancher Comprendre le Calcul du Nombre de Poutres pour Plancher Vous êtes ingénieur en génie civil et travaillez sur la conception d'un nouveau bâtiment résidentiel. L'une des étapes clés de ce projet est la conception du plancher en...

Analyse d’une Poutre en Béton Précontraint

Analyse d'une Poutre en Béton Précontraint Comprendre l'Analyse d'une Poutre en Béton Précontraint Concevoir une poutre en béton précontraint pour une application spécifique, en utilisant les méthodes de pré-tension et de post-tension, conformément aux Eurocodes. pour...

Calcul des armatures d’une poutre

Calcul des armatures d'une poutre Comprendre le calcul des armatures d'une poutre: Vous êtes ingénieur en structure et devez concevoir les armatures d'une poutre en béton armé pour un petit pont routier. Le pont doit supporter à la fois son propre poids (poids propre)...

Vérifier le non-écrasement des bielles de béton

Vérifier le non-écrasement des bielles de béton Vérifier le non-écrasement des bielles de béton en compression dans la poutre Vous êtes ingénieur en structure et travaillez sur la conception d'un bâtiment à usage commercial de 5 étages. La structure principale est en...

Calcul du coefficient d’équivalence

Calcul du coefficient d'équivalence Comprendre le Calcul du coefficient d'équivalence Vous êtes ingénieur en structure travaillant sur la conception d'un bâtiment en béton armé. Une partie de votre tâche consiste à calculer le coefficient d'équivalence pour garantir...

Ferraillage semelle isolée

Ferraillage semelle isolée Comprendre le ferraillage semelle isolée : Vous êtes ingénieur en génie civil chargé de la conception et du ferraillage d’une semelle isolée pour une colonne d’un bâtiment R+4 (rez-de-chaussée plus quatre étages). La semelle doit répartir...

Contrôle de la Fissuration d’une Poutre

Contrôle de la Fissuration d'une Poutre Comprendre le contrôle de la Fissuration d'une Poutre En tant qu'ingénieur en construction, vous êtes chargé d'évaluer la durabilité et la sécurité d'une poutre en béton armé exposée à des conditions environnementales classées...

Ferraillage fondation en béton armé

Ferraillage Fondation en Béton Armé Comprendre le ferraillage fondation en béton armé Vous êtes un ingénieur en génie civil chargé de concevoir le ferraillage d'une fondation en béton armé pour un nouveau bâtiment résidentiel. La fondation doit supporter un immeuble...

Ferraillage transversal d’une poutre

Ferraillage transversal d'une poutre Comprendre le ferraillage transversal d'une poutre: Vous êtes chargé de concevoir le ferraillage transversal d'une poutre simplement appuyée qui supporte des charges uniformément réparties. La poutre a une portée de 8 m et doit...