Traction et compression exercice corrigé

Traction et Compression exercice corrigé

Contexte : Traction et compression

Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes.

Pour comprendre les Contraintes et déformations en traction, cliquez sur le lien.

Données:

  • Matériau de la poutre: Acier
  • Longueur de la poutre (L): 8 mètres
  • Section transversale de la poutre: Circulaire, avec un diamètre (d) de 0.15 mètres
  • Module d’élasticité de l’acier (E): 200 GPa
  • Limite élastique en traction de l’acier: 250 MPa
  • Limite élastique en compression de l’acier: 250 MPa
  • Poids spécifique de l’acier: 7850 kg/m³

Partie A: Analyse en Traction

  1. Calculez l’aire de la section transversale de la poutre.
  2. Si une force axiale de traction de 300 kN est appliquée à la poutre, déterminez la contrainte de traction dans la poutre.
  3. Vérifiez si la poutre est en sécurité sous cette charge de traction (c’est-à-dire, la contrainte est-elle inférieure à la limite élastique?).
  4. Calculez l’allongement de la poutre sous cette charge, en supposant un comportement élastique.

Partie B: Analyse en Compression

  1. Si une force axiale de compression de 300 kN est appliquée à la poutre, déterminez la contrainte de compression dans la poutre.
  2. Vérifiez si la poutre est en sécurité sous cette charge de compression.
  3. Calculez le raccourcissement de la poutre sous cette charge, en supposant un comportement élastique.
  4. Discutez brièvement la possibilité de flambage dans ce scénario et les facteurs qui pourraient y contribuer.

Réflexions supplémentaires:

  • Comment les résultats changeraient-ils si la section transversale de la poutre était rectangulaire plutôt que circulaire?
  • Quelles seraient les implications si la longueur de la poutre était doublée, tout en maintenant les mêmes charges?

Correction : traction et compression

Partie A: Analyse en Traction

1. Calcul de l’aire de la section transversale:

La section transversale de la poutre est un cercle. Pour un cercle avec un diamètre \(d = 0.15\) m, le rayon \(r\) est de \( \frac{d}{2} \).

Donc, \( r = \frac{0.15}{2} \) m. L’aire \(A\) de la section transversale est alors donnée par la formule de l’aire d’un cercle:

\[
A = \pi r^2 \] \[
A  = \pi \left(\frac{0.15}{2}\right)^2 \approx 0.0177 \text{ m}^2.
\]

2. Calcul de la contrainte de traction:

La contrainte de traction \(\sigma\) est calculée en utilisant la force appliquée \(F\) et l’aire \(A\).

Pour une force appliquée de 300 kN (ou \(300 \times 10^3\) N), la contrainte est:

\[
\sigma = \frac{F}{A} \] \[
\sigma  = \frac{300 \times 10^3 \text{ N}}{0.0177 \text{ m}^2} \] \[
\sigma  \approx 16.95 \times 10^6 \text{ Pa} = 169.5 \text{ MPa}.
\]

3. Vérification de la sécurité sous la charge de traction:

La contrainte de traction calculée de 169.5 MPa est à comparer avec la limite élastique en traction de l’acier, qui est de 250 MPa.

Puisque \(169.5 \text{ MPa} < 250 \text{ MPa}\), la poutre est considérée comme sûre sous cette charge de traction.

4. Calcul de l’allongement de la poutre:

L’allongement \(\Delta L\) de la poutre sous la charge est calculé en utilisant la loi de Hooke.

Pour un module d’élasticité \(E\) de l’acier de 200 GPa (ou \(200 \times 10^9\) Pa) et une longueur originale de la poutre \(L\) de 8 mètres, l’allongement est:

\[
\Delta L = \frac{\sigma \times L}{E} = \frac{169.5 \times 10^6 \times 8}{200 \times 10^9} \text{ m} \] \[
\Delta L \approx 0.00678 \text{ m} = 6.78 \text{ mm}.
\]

Partie B: Analyse en Compression

1. Contrainte de compression dans la poutre

La contrainte de compression est identique à la contrainte de traction, car la force et l’aire de la section transversale restent les mêmes. Ainsi,
\begin{equation}
\sigma = 169.5 \text{ MPa}.
\end{equation}

2. Vérification de la sécurité sous charge de compression

Comme pour la traction, la contrainte de compression (169.5 MPa) est également inférieure à la limite élastique en compression de l’acier (250 MPa). La poutre est donc sécuritaire sous cette charge.

3. Raccourcissement de la poutre

Le raccourcissement est calculé de la même manière que l’allongement,
\begin{equation}
\Delta L = 6.78 \text{ mm}.
\end{equation}

Discussion sur le flambage

Le flambage est une considération cruciale lorsqu’une colonne est soumise à une charge de compression.

Pour cette poutre, un calcul complet du risque de flambage nécessiterait des informations supplémentaires sur les conditions de support et de fixation aux extrémités.

La formule d’Euler pour le flambage peut être utilisée pour une première estimation.

Réflexions supplémentaires:

Section transversale rectangulaire : Si la section transversale était rectangulaire, cela affecterait la répartition des contraintes et pourrait modifier la résistance de la poutre au flambage.

Doublement de la longueur de la poutre : Si la longueur de la poutre était doublée, cela augmenterait significativement le risque de flambage sous compression, et l’allongement/raccourcissement serait également doublé sous les mêmes charges, en supposant un comportement élastique linéaire.

D’autres exercices de Résistance des materiaux :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

1 Commentaire

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Coefficient de Poisson

Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

Torsion d’une barre circulaire

Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

Contraintes et déformations en traction

Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

Calcul de la déformation élastique

Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

Calcul de la Déflexion Totale

Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Contrainte en un Point Spécifique d’une Poutre

Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

Application de la Méthode des Trois Moments

Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...

Étude des Forces dans les Barres d’une Structure

Étude des Forces dans les Barres d'une Structure Comprendre l'Étude des Forces dans les Barres d'une Structure Dans le cadre d'une mission d'ingénierie civile, vous êtes chargé de vérifier la stabilité d'une structure temporaire utilisée lors d'un événement en plein...