Évaluation du Risque de Renard

Évaluation du Risque de Renard

Comprendre l’Évaluation du Risque de Renard

Une petite ville est située à proximité d’une rivière et est protégée des inondations par une digue.

La digue est construite en terre et a été conçue pour résister aux niveaux d’eau attendus pour une crue centennale.

Cependant, des inspections récentes ont révélé la présence de matériaux granulaires fins sous une section de la digue, soulevant des inquiétudes concernant le risque de formation de renard sous la digue en cas de crue majeure.

Données Fournies:

  • Hauteur de la digue (H): 5 mètres
  • Longueur de la zone à risque sous la digue (L): 20 mètres
  • Gradient hydraulique critique (i_c) pour le début de l’érosion interne: 1 pour 1000
  • Porosité (n) du matériau granulaire sous la digue: 0.35
  • Coefficient de perméabilité (k) du matériau sous la digue: \(1 \times 10^{-5}\) m/s
  • Différence de hauteur d’eau attendue \((\Delta H)\) lors d’une crue centennale: 4 mètres

Questions:

1. Calculer le gradient hydraulique (i) à travers le matériau sous la digue en utilisant la différence de hauteur d’eau et la longueur de la zone à risque.

2. Déterminer si le gradient hydraulique calculé dépasse le gradient hydraulique critique, indiquant un risque potentiel de renard.

3. Estimer le débit d’eau (Q) à travers le matériau sous la digue en utilisant la loi de Darcy.
\[
Q = k \times i \times A
\]
où A est la section transversale de l’écoulement, que nous supposerons être égale à \(1m^2\) pour simplifier.

4. Discussion:

Sur la base des résultats obtenus, évaluer le risque de renard sous la digue. Si le gradient hydraulique calculé est supérieur au gradient critique, discuter des mesures potentielles de renforcement de la digue pour réduire le risque de renard.

Correction : Évaluation du Risque de Renard

1. Calcul du Gradient Hydraulique (i)

Le gradient hydraulique est défini par la formule

\[ i = \frac{\Delta H}{L} \]

où \(\Delta H\) est la différence de hauteur d’eau et L est la longueur de la zone à risque sous la digue.

\(\Delta H = 4\) mètres et \(L = 20\) mètres.

\[i = \frac{4}{20} = 0.2\]

Le gradient hydraulique calculé est donc de 0.2. Ce résultat indique la pente de l’énergie hydraulique par unité de distance à travers le matériau sous la digue.

2. Comparaison avec le Gradient Hydraulique Critique

Le gradient hydraulique critique i_c est de 0.001. Ce seuil représente la condition sous laquelle le risque d’érosion interne et de formation de renard commence à être significatif.

Puisque le gradient hydraulique calculé 0.2 est supérieur au gradient critique 0.001, cela signifie que le risque de renard est élevé sous la digue dans les conditions données.

La digue est donc susceptible d’être endommagée par l’érosion interne en cas de crue majeure.

3. Estimation du Débit d’Eau (Q)

L’estimation du débit d’eau à travers le matériau sous la digue se fait en utilisant la loi de Darcy:

\[ Q = k \times i \times A \]

où k est le coefficient de perméabilité, i est le gradient hydraulique, et A est la section transversale de l’écoulement.

Avec \(k = 1 \times 10^{-5}\) m/s, \(i = 0.2\), et \(A = 1m^2\) (pour simplification):

\[ Q = 1 \times 10^{-5} \times 0.2 \times 1 \] \[ Q  = 2 \times 10^{-6}\, \text{m}^3\text{/s} \]

Ce faible débit indique la quantité d’eau pouvant s’infiltrer à travers le matériau sous la digue par seconde, par mètre carré. Malgré sa petitesse, la présence d’un gradient élevé souligne un risque d’érosion pouvant compromettre la stabilité de la digue.

4. Discussion et Mesures de Mitigation

La comparaison directe du gradient hydraulique avec son seuil critique révèle un risque significatif de formation de renard, qui nécessite des actions préventives pour assurer la sécurité de la digue.

Des mesures comme le renforcement du substrat de la digue avec des matériaux moins perméables, l’installation de systèmes de drainage efficaces, ou l’utilisation de barrières géotextiles pour prévenir l’érosion tout en permettant l’écoulement de l’eau, peuvent être envisagées pour réduire ce risque.

Évaluation du Risque de Renard

D’autres exercices d’hydraulique:

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de la Distribution de Pression

Calcul de la Distribution de Pression Comprendre le Calcul de la Distribution de Pression Dans un projet de génie civil, vous êtes chargé de concevoir une section d'un réseau d'aqueduc qui alimente une petite ville. Le réseau doit transporter de l'eau depuis un...

Étude de la Variation de Pression

Étude de la Variation de Pression Comprendre l'Étude de la Variation de Pression Vous êtes ingénieur en génie civil et vous travaillez sur la conception d'un barrage. Une partie de votre tâche est de déterminer la pression exercée par l'eau à différentes profondeurs...

Calcul de la quantité de Mouvement de l’eau

Calcul de la quantité de Mouvement de l'eau Comprendre le Calcul de la quantité de Mouvement de l'eau Vous êtes un ingénieur civil chargé de concevoir un pont au-dessus d'une rivière. Le pont doit résister à la force exercée par l'écoulement de l'eau, en particulier...

Écoulement Irrotationnel Autour d’un Cylindre

Écoulement Irrotationnel Autour d'un Cylindre Comprendre l'Écoulement Irrotationnel Autour d'un Cylindre Considérons un écoulement irrotationnel bidimensionnel et incompressible autour d'un cylindre de rayon \(R\), placé dans un fluide (eau) qui s'écoule avec une...

Calcul de la Pression d’Eau

Calcul de la Pression d'Eau Comprendre le Calcul de la Pression d'Eau Vous êtes un ingénieur en génie civil chargé de concevoir un système d'alimentation en eau pour une maison. Un réservoir d'eau est placé à 15 mètres au-dessus du niveau du sol, et vous devez assurer...

Régime d’Écoulement dans une Conduite

Régime d'Écoulement dans une Conduite Comprendre le Régime d'Écoulement dans une Conduite Vous êtes ingénieur en génie civil et travaillez sur la conception d'un système de distribution d'eau pour un nouveau quartier résidentiel. Une partie essentielle de votre...

Analyser les forces exercées par un fluide

Analyser les forces exercées par un fluide Comprendre l'Analyser les forces exercées par un fluide Vous êtes un ingénieur hydraulique dans une entreprise spécialisée dans la conception et la construction de réservoirs destinés à stocker de l'eau potable. Votre mission...

Propriétés Physiques des Fluides

Propriétés Physiques des Fluides Comprendre les propriétés physiques des fluides Vous êtes un ingénieur débutant travaillant pour ABC Génie Civil. Vous avez pour mission de concevoir un système de distribution d'eau potable pour la communauté de Nouvelle Ville. Avant...

Calcul du Nombre de Reynolds

Calcul du Nombre de Reynolds Comprendre le calcul du nombre de reynolds Dans un système de tuyauterie industriel, de l'eau (à 20°C) s'écoule à travers un tuyau d'un diamètre intérieur de 50 mm. La vitesse moyenne de l'eau dans le tuyau est de 3 m/s. Objectif :...

Calcul la vitesse de l’eau dans un tuyau

Calcul la vitesse de l'eau dans un tuyau Comprendre le Calcul la vitesse de l'eau dans un tuyau Vous êtes un(e) ingénieur(e) travaillant sur la conception d'un système d'irrigation pour une ferme agricole. Le système est alimenté par une source d'eau située à une...