Déplacement de l’Extrémité Libre

Déplacement de l’Extrémité Libre

Comprendre le déplacement de l’Extrémité Libre

Considérons une poutre encastrée-libre, c’est-à-dire une poutre avec une extrémité encastrée et l’autre extrémité libre.

Cette poutre est soumise à une charge uniformément répartie et à une charge ponctuelle à son extrémité libre.

Pour comprendre le Tracé d’Effort Tranchant et du Moment Fléchissant, cliquez sur le lien.

Données de la Poutre:

Les caractéristiques de la poutre et les charges appliquées sont les suivantes :

  • Longueur de la poutre, L = 6 m
  • Module d’élasticité du matériau de la poutre, E = 210 GPa
  • Moment d’inertie de la section transversale, I = 8000 \({cm}^4\)
  • Charge uniformément répartie, q = 5 kN/m
  • Charge ponctuelle à l’extrémité libre, P = 10 kN
    Déplacement de l'Extrémité Libre

    Instructions:

    1. Calcul des Réactions d’Appui: Déterminer les réactions au niveau de l’encastrement.
    2. Diagramme des Moments Fléchissants (DMF): Établir le DMF pour la poutre.
    3. Déplacement de l’Extrémité Libre: Calculer le déplacement vertical de l’extrémité libre de la poutre.

    Correction : déplacement de l’Extrémité Libre

    Étape 1: Calcul des Réactions d’Appui

    Pour une poutre encastrée-libre, les réactions d’appui se composent d’une force verticale et d’un moment à l’encastrement.

    1. Force Verticale à l’Encastrement (R)

    La force totale due à la charge uniformément répartie est

    \[ = q \times L \] \[ = 5 \, \text{kN/m} \times 6 \, \text{m} \] \[ = 30 \, \text{kN} \]

    Cette force agit au centre de gravité de la charge répartie, qui se situe au milieu de la poutre (à 3 m de l’encastrement). En plus, il y a une charge ponctuelle de 10 kN à l’extrémité libre.

    L’équation d’équilibre verticale est :
    \[ R = qL + P \] \[ R = 30 \, \text{kN} + 10 \, \text{kN} \] \[ R = 40 \, \text{kN} \]

    2. Moment à l’Encastrement (M)

    Le moment dû à la charge uniformément répartie est \( \frac{qL^2}{2} \) et le moment dû à la charge ponctuelle est \( PL \)

    Ainsi,
    \[ M = \frac{qL^2}{2} + PL \] \[ M = \frac{5 \times 6^2}{2} + 10 \times 6 \] \[ M = 90 + 60 \] \[ M = 150 \, \text{kNm} \]

    Étape 2: Diagramme des Moments Fléchissants (DMF)

    Le DMF pour une poutre encastrée-libre avec une charge uniformément répartie et une charge ponctuelle à l’extrémité se calcule de la manière suivante :

    • À l’encastrement (point A, à \(x=0\)), le moment est maximal et égal à 150 kNm (calculé ci-dessus).
    • Le moment diminue linéairement le long de la poutre à cause de la charge uniformément répartie.
    • À l’extrémité libre (point B, à \(x=L\)), le moment est nul.

    Le DMF est donc une courbe qui commence à 150 kNm à l’encastrement, décroît linéairement et atteint 0 kNm à l’extrémité libre.

    Déplacement de l'Extrémité Libre

    Étape 3: Déplacement de l’Extrémité Libre

    Déplacement dû à la Charge Uniformément Répartie \((\delta_q)\):

    Le déplacement dû à la charge uniformément répartie est calculé par la formule :

    \[\delta_q = \frac{qL^4}{8EI} \] \[\delta_q = \frac{5  \times 10^3 \times 6^4}{8 \times 210 \times 10^9 \times 8000 \times 10^{-8}} \] \[\delta_q \approx 4.82 \, \text{mm}\]

    Déplacement dû à la Charge Ponctuelle \((\delta_P)\):

    Le déplacement dû à la charge ponctuelle est calculé par la formule :

    \[\delta_P = \frac{PL^3}{3EI} \] \[\delta_P = \frac{10 \times 10^3 \times 6^3}{3 \times 210 \times 10^9 \times 8000 \times 10^{-8}} \] \[\delta_P \approx 4.29 \, \text{mm}\]

    Déplacement Total à l’Extrémité Libre:

    Le déplacement total à l’extrémité libre est donc la somme des deux déplacements calculés précédemment :

    \[\delta_{\text{total}} = \delta_q + \delta_P \] \[\delta_{\text{total}} \approx 4.82 \, \text{mm} + 4.29 \, \text{mm} \] \[\delta_{\text{total}} \approx 9.11 \, \text{mm}\]

    Résumé:

    • Les réactions à l’encastrement sont une force verticale de 40 kN et un moment de 150 kNm.
    • Le Diagramme des Moments Fléchissants (DMF) décroît linéairement de 150 kNm à 0 kNm de l’encastrement à l’extrémité libre.
    • Le déplacement total à l’extrémité libre est d’environ 9.11 mm, ce qui est significativement plus élevé que le résultat initialement calculé de 2.60 mm.

    Déplacement de l’Extrémité Libre

    D’autres exercices de Rdm:

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Calcul du Coefficient de Poisson

    Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

    Torsion d’une barre circulaire

    Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

    Contraintes et déformations en traction

    Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

    Calcul de la déformation élastique

    Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

    Calcul de la Déflexion Totale

    Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

    Tension maximale dans le tirant

    Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

    Calcul du Moment Fléchissant Maximal

    Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

    Traction et compression exercice corrigé

    Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

    Contrainte en un Point Spécifique d’une Poutre

    Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

    Application de la Méthode des Trois Moments

    Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...