Compressibilité d’une Huile sous Pression

Compressibilité d’une Huile sous Pression

Comprendre la Compressibilité d’une Huile sous Pression

Un réservoir sphérique de 2 mètres de diamètre est rempli d’huile (considérée comme un fluide incompressible). Ce réservoir est connecté à un système qui permet d’augmenter la pression interne de l’huile.

On souhaite étudier l’effet de la compressibilité de l’huile (considérée ici comme légèrement compressible) sous différentes pressions.

Données:

  • Diamètre du réservoir D = 2 m
  • Module d’élasticité volumique de l’huile \(E = 1.5 \times 10^9 \, \text{Pa}\)
  • Volume initial de l’huile \(V_0 = \frac{4}{3}\pi\left(\frac{D}{2}\right)^3\)
  • Pression initiale de l’huile \(P_0 = 1 \, \text{atm}\) (atmosphère standard)
  • Pressions à étudier: \(P_1 = 10 \, \text{atm}\), \(P_2 = 20 \, \text{atm}\), \(P_3 = 30 \, \text{atm}\)

Objectifs:

1. Calculer le volume initial de l’huile dans le réservoir.
2. Déterminer la variation du volume de l’huile pour chaque pression \(P_1\), \(P_2\), \(P_3\).
3. Commenter les résultats obtenus en termes de compressibilité de l’huile et de l’élasticité du réservoir.

Instructions supplémentaires

  • Assumez que le réservoir reste intact et ne se déforme pas sous la pression.
  • Utilisez \(1 \, \text{atm} = 101325 \, \text{Pa}\) pour les conversions de pression.

Correction : Compressibilité d’une Huile sous Pression

1. Calcul du Volume Initial de l’Huile dans le Réservoir

Le volume initial \(V_0\) d’une sphère est donné par la formule

\[ V_0 = \frac{4}{3}\pi \left(\frac{D}{2}\right)^3 \]

Avec un diamètre D = 2 m, nous avons :

\[ V_0 = \frac{4}{3}\pi \left(\frac{2}{2}\right)^3 \] \[ V_0 = \frac{4}{3}\pi (1)^3 \] \[ V_0= \frac{4}{3}\pi \, \text{m}^3 \]

Ce qui donne :

\[ V_0 \approx 4.19 \, \text{m}^3 \]

2. Détermination de la Variation du Volume de l’Huile pour Chaque Pression

La formule de compressibilité est :

\[ \Delta V = -\frac{V_0 \Delta P}{E} \]

Pour chaque pression, \(\Delta P = P – P_0\), avec \(P_0 = 1\) atm (ou \(101325\) Pa) et \(E = 1.5 \times 10^9\) Pa.

  • Pour \(P_1 = 10\) atm :

\[ \Delta P_1 = 10 \times 101325 – 101325 \] \[ \Delta P_1 = 913925 \, \text{Pa} \]
\[ \Delta V_1 = -\frac{4.19 \times 913925}{1.5 \times 10^9} \]
\[ \Delta V_1 \approx -2.54 \times 10^{-3} \, \text{m}^3 \]

  • Pour \(P_2 = 20\) atm :

\[ \Delta P_2 = 20 \times 101325 – 101325 \] \[ \Delta P_2 =  1838650 \, \text{Pa} \]
\[ \Delta V_2 = -\frac{4.19 \times 1838650}{1.5 \times 10^9} \]
\[ \Delta V_2 \approx -5.08 \times 10^{-3} \, \text{m}^3 \]

  • Pour \(P_3 = 30\) atm :

\[ \Delta P_3 = 30 \times 101325 – 101325 \] \[ \Delta P_3 = 2747975 \, \text{Pa} \]
\[ \Delta V_3 = -\frac{4.19 \times 2747975}{1.5 \times 10^9} \]
\[ \Delta V_3 \approx -7.62 \times 10^{-3} \, \text{m}^3 \]

3. Commentaire sur les Résultats

La variation de volume \(\Delta V\) est négative pour toutes les pressions, ce qui indique une diminution du volume de l’huile en réponse à l’augmentation de la pression.

Cela est cohérent avec la nature compressible de l’huile, bien que la compressibilité soit relativement faible, comme le montrent les petites variations de volume.

  • Pour \(P_1 = 10\) atm, la diminution du volume est d’environ \(2.54 \times 10^{-3}\) m\(^3\), ce qui est une petite fraction du volume initial.
  • À \(P_2 = 20\) atm, cette diminution double, indiquant une relation presque linéaire entre la pression appliquée et la compressibilité pour les plages de pression étudiées.
  • À \(P_3 = 30\) atm, la diminution est encore plus grande, mais reste dans le même ordre de grandeur.

Compressibilité d’une Huile sous Pression

D’autres exercices d’hydraulique:

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de la Distribution de Pression

Calcul de la Distribution de Pression Comprendre le Calcul de la Distribution de Pression Dans un projet de génie civil, vous êtes chargé de concevoir une section d'un réseau d'aqueduc qui alimente une petite ville. Le réseau doit transporter de l'eau depuis un...

Étude de la Variation de Pression

Étude de la Variation de Pression Comprendre l'Étude de la Variation de Pression Vous êtes ingénieur en génie civil et vous travaillez sur la conception d'un barrage. Une partie de votre tâche est de déterminer la pression exercée par l'eau à différentes profondeurs...

Calcul de la quantité de Mouvement de l’eau

Calcul de la quantité de Mouvement de l'eau Comprendre le Calcul de la quantité de Mouvement de l'eau Vous êtes un ingénieur civil chargé de concevoir un pont au-dessus d'une rivière. Le pont doit résister à la force exercée par l'écoulement de l'eau, en particulier...

Écoulement Irrotationnel Autour d’un Cylindre

Écoulement Irrotationnel Autour d'un Cylindre Comprendre l'Écoulement Irrotationnel Autour d'un Cylindre Considérons un écoulement irrotationnel bidimensionnel et incompressible autour d'un cylindre de rayon \(R\), placé dans un fluide (eau) qui s'écoule avec une...

Calcul de la Pression d’Eau

Calcul de la Pression d'Eau Comprendre le Calcul de la Pression d'Eau Vous êtes un ingénieur en génie civil chargé de concevoir un système d'alimentation en eau pour une maison. Un réservoir d'eau est placé à 15 mètres au-dessus du niveau du sol, et vous devez assurer...

Régime d’Écoulement dans une Conduite

Régime d'Écoulement dans une Conduite Comprendre le Régime d'Écoulement dans une Conduite Vous êtes ingénieur en génie civil et travaillez sur la conception d'un système de distribution d'eau pour un nouveau quartier résidentiel. Une partie essentielle de votre...

Analyser les forces exercées par un fluide

Analyser les forces exercées par un fluide Comprendre l'Analyser les forces exercées par un fluide Vous êtes un ingénieur hydraulique dans une entreprise spécialisée dans la conception et la construction de réservoirs destinés à stocker de l'eau potable. Votre mission...

Propriétés Physiques des Fluides

Propriétés Physiques des Fluides Comprendre les propriétés physiques des fluides Vous êtes un ingénieur débutant travaillant pour ABC Génie Civil. Vous avez pour mission de concevoir un système de distribution d'eau potable pour la communauté de Nouvelle Ville. Avant...

Calcul du Nombre de Reynolds

Calcul du Nombre de Reynolds Comprendre le calcul du nombre de reynolds Dans un système de tuyauterie industriel, de l'eau (à 20°C) s'écoule à travers un tuyau d'un diamètre intérieur de 50 mm. La vitesse moyenne de l'eau dans le tuyau est de 3 m/s. Objectif :...

Calcul la vitesse de l’eau dans un tuyau

Calcul la vitesse de l'eau dans un tuyau Comprendre le Calcul la vitesse de l'eau dans un tuyau Vous êtes un(e) ingénieur(e) travaillant sur la conception d'un système d'irrigation pour une ferme agricole. Le système est alimenté par une source d'eau située à une...