Cisaillement dans une poutre

Cisaillement dans une poutre

Comprendre le cisaillement dans une poutre

Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées.

L’objectif est de déterminer la contrainte de cisaillement maximale dans la poutre.

Pour comprendre la Déformation Axiale Due à la Température, cliquez sur le lien.

Données de l’Exercice

  • Longueur de la poutre, \( L = 6 \) mètres
  • Charge uniformément répartie, \( w = 5 \) kN/m
  • Charges concentrées : \( P_1 = 10 \) kN à 2 m du support gauche, \( P_2 = 15 \) kN à 4 m du support gauche
  • Largeur de la section transversale de la poutre, \( b = 150 \) mm
  • Hauteur de la section transversale de la poutre, \( h = 300 \) mm
  • La poutre est en acier avec une limite d’élasticité de 250 MPa

Questions:

1. Calcul des Réactions aux Appuis :

  • Déterminez les réactions aux appuis en considérant les charges appliquées.

2. Diagramme de Cisaillement :

  • Construisez le diagramme de cisaillement de la poutre. Identifiez les points où le cisaillement est maximal.

3. Calcul de la Contrainte de Cisaillement :

  • Utilisez la formule de cisaillement, \(\tau = \frac{VQ}{Ib}\), où \( V \) est la force de cisaillement, \( Q \) est le moment statique de la zone au-dessus du point d’intérêt, \( I \) est le moment d’inertie de la section transversale, et \( b \) est la largeur de la poutre. Calculez la contrainte de cisaillement maximale dans la poutre.

4. Vérification de la Sécurité :

  • Comparez la contrainte de cisaillement maximale trouvée avec la limite d’élasticité de l’acier.
  • Vérifiez si la poutre est sûre pour les charges données.

Correction : cisaillement dans une poutre

1. Calcul des Réactions aux Appuis

Étape 1: Équilibre vertical

\[R_A + R_B = wL + P_1 + P_2\]
\[ = (5\,\text{kN/m} \times 6\,\text{m}) + 10\,\text{kN} + 15\,\text{kN} \] \[ = 30\,\text{kN} + 25\,\text{kN} \] \[ = 55\,\text{kN} \]

Étape 2: Moment autour d’un des appuis (disons autour de A)

\[R_B \times L = w \times \frac{L}{2} \times L + P_1 \times 2\,\text{m} + P_2 \times 4\,\text{m}\] \[R_B \times 6\,\text{m} = 5\,\text{kN/m} \times 3\,\text{m} \times 6\,\text{m} + 10\,\text{kN} \times 2\,\text{m} + 15\,\text{kN} \times 4\,\text{m}\] \[R_B = \frac{90 + 20 + 60}{6}\,\text{kN}\] \[R_B = \frac{170}{6}\,\text{kN}\] \[R_B \approx 28.33\,\text{kN}\]

Réaction à A:

\[R_A = 55\,\text{kN} – 28.33\,\text{kN} = 26.67\,\text{kN}\]

2. Diagramme de Cisaillement de la Poutre

De 0 à 2 m (Entre l’appui A et la charge \(P_1\)

  • Au point A (0 m), le cisaillement commence à \(V = R_A = 26.67\, \text{kN}\).
  • À une distance \(x\) (où \(0 < x < 2\, \text{m}\)) de l’appui A, la charge répartie qui a agi jusqu’à ce point est \(w \times x = 5\, \text{kN/m} \times x\).
  • Le cisaillement à ce point est donc
    \[ V(x) = R_A – w \times x \]\[ V(x) = 26.67\, \text{kN} – 5\, \text{kN/m} \times x.\]

À 2 m, avant l’application de \(P_1\), le cisaillement sera
\[ V(2) = 26.67\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ V(2) = 26.67\, \text{kN} – 10\, \text{kN} \] \[ V(2)  = 16.67\, \text{kN}.
\]

À 2 m (Effet de la charge \(P_1\))

Juste après l’application de la charge \(P_1\), le cisaillement chute de 10 kN. Donc, à 2 m, juste après \(P_1\), le cisaillement est de

\[ = 16.67\, \text{kN} – 10\, \text{kN} = 6.67\, \text{kN}.
\]

De 2 m à 4 m

De la même manière, entre 2 m et 4 m, le cisaillement continue de diminuer linéairement à cause de la charge répartie. À 4 m, avant \(P_2\), il sera

\[ = 6.67\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ = 6.67\, \text{kN} – 10\, \text{kN} = -3.33\, \text{kN} \]

À 4 m (Effet de la charge \(P_2\))

Juste après l’application de la charge \(P_2\), le cisaillement chute de 15 kN. Donc, à 4 m, juste après \(P_2\), le cisaillement est de

\[ = -3.33\, \text{kN} – 15\, \text{kN} \] \[ = -18.33\, \text{kN} \]

De 4 m à 6 m

Entre 4 m et 6 m, le cisaillement continue de diminuer linéairement jusqu’à l’appui B. À l’appui B (6 m), le cisaillement est

\[ = -18.33\, \text{kN} – 5\, \text{kN/m} \times 2\, \text{m} \] \[ = -18.33\, \text{kN} – 10\, \text{kN} \] \[ = -28.33\, \text{kN}, \]

ce qui correspond à la réaction en B.

Résumé et Implications pour le Diagramme de Cisaillement

Le diagramme commence à \(+26.67\, \text{kN}\) à l’appui A, descend linéairement jusqu’à \(+16.67\, \text{kN}\) à 2 m, puis chute brusquement à \(+6.67\, \text{kN}\).

Il continue de descendre linéairement jusqu’à \(-3.33\, \text{kN}\) à 4 m, puis chute brusquement à \(-18.33\, \text{kN}\). Finalement, il continue à descendre linéairement jusqu’à \(-28.33\, \text{kN}\) à l’appui B.

3. Calcul de la Contrainte de Cisaillement

Moment d’inertie (I) de la section transversale rectangulaire:

\begin{align*}
I &= \frac{bh^3}{12} \end{align*} \begin{align*}
I & = \frac{0.15 \, \text{m} \times (0.3 \, \text{m})^3}{12} \end{align*} \begin{align*}
I & \approx 0.0003375 \, \text{m}^4
\end{align*}

Moment statique (Q) pour la hauteur maximale (au centre de la poutre):

\begin{align*}
Q &= A’ \times y’ \end{align*} \begin{align*}
Q & = \frac{bh}{2} \times \frac{h}{4} \end{align*} \begin{align*}
Q & = \frac{0.15 \, \text{m} \times 0.3 \, \text{m}}{2} \times \frac{0.3 \, \text{m}}{4} \end{align*} \begin{align*}
Q & \approx 0.003375 \, \text{m}^3
\end{align*}

Contrainte de cisaillement maximale (\(\tau_{\text{max}}\)) au point de cisaillement maximal (par exemple, à l’appui A):

\begin{align*}
\tau_{\text{max}} &= \frac{V_{\text{max}} Q}{Ib} \end{align*}

\[ \tau_{\text{max}} = \frac{26.67 \times 10^3 \, \text{N} \times 0.003375 \, \text{m}^3}{0.0003375 \, \text{m}^4 \times 0.15 \, \text{m}} \] \begin{align*}
\tau_{\text{max}} & \approx 1.67 \, \text{MPa}
\end{align*}

4. Vérification de la Sécurité

La contrainte de cisaillement maximale est \(\tau_{\text{max}} = 1.67 \, \text{MPa}\), qui est bien inférieure à la limite d’élasticité de l’acier de 250 MPa.

Par conséquent, la poutre est considérée comme sûre sous ces charges.

Cisaillement dans une poutre

cisaillement dans une poutre

D’autres exercices de Rdm :

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Coefficient de Poisson

Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

Torsion d’une barre circulaire

Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

Contraintes et déformations en traction

Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

Calcul de la déformation élastique

Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

Calcul de la Déflexion Totale

Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Traction et compression exercice corrigé

Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

Contrainte en un Point Spécifique d’une Poutre

Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

Application de la Méthode des Trois Moments

Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...