Capacité Portante et Tassement des Sols

Capacité Portante et Tassement des Sols

Comprendre la Capacité Portante et Tassement des Sols

Un projet de construction d’un immeuble de grande hauteur est en cours dans une zone urbaine. L’étude géotechnique du site a révélé la présence de différentes couches de sols.

Le site est constitué de trois couches de sol distinctes :

  • La première couche est de l’argile molle d’une épaisseur de 3 mètres.
  • La deuxième couche est un sable fin saturé d’une épaisseur de 5 mètres.
  • La troisième couche est un limon dense d’une épaisseur de 6 mètres.

L’immeuble repose sur des fondations superficielles de type semelle isolée. On cherche à vérifier la capacité portante de la fondation et le tassement prévu sous une charge donnée.

Données :

  1. Propriétés des sols :
    • Argile molle :
      • Poids volumique (γ) = 18 kN/m³
      • Cohésion (c) = 20 kPa
      • Angle de frottement interne (φ) = 0°
      • Module de compressibilité (Mv) = 0.5 m²/MN
    • Sable fin saturé :
      • Poids volumique (γ) = 20 kN/m³
      • Cohésion (c) = 0 kPa
      • Angle de frottement interne (φ) = 30°
      • Module de compressibilité (Mv) = 1.2 m²/MN
    • Limon dense :
      • Poids volumique (γ) = 22 kN/m³
      • Cohésion (c) = 15 kPa
      • Angle de frottement interne (φ) = 28°
      • Module de compressibilité (Mv) = 0.8 m²/MN
  2. Dimensions de la semelle :
    • Largeur (B) = 2.5 mètres
    • Longueur (L) = 2.5 mètres
    • Profondeur d’installation (D) = 1.5 mètres
  3. Charges :
    • Charge verticale appliquée (Q) = 1200 kN
Capacité Portante et Tassement des Sols

Questions :

1. Calcul de la capacité portante de la fondation :

Utilisez la formule de Terzaghi pour les fondations superficielles afin de déterminer la capacité portante ultime (qu) de la semelle.

2. Calcul du tassement de la fondation :

Estimez le tassement de la fondation en utilisant la méthode de la consolidation pour chaque couche de sol.

Correction : Capacité Portante et Tassement des Sols

1. Calcul de la capacité portante de la fondation

La formule de Terzaghi pour la capacité portante ultime (\(q_u\)) est :

\[ q_u = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \]

Propriétés des sols et facteurs de capacité portante:

  • Argile molle (φ = 0°) :
    • Nc = 5.7, Nq = 1, Nγ = 0
    • γ = 18 kN/m³, c = 20 kPa
  • Sable fin (φ = 30°) :
    • Nc = 30.1, Nq = 18.4, Nγ = 15.1
    • γ = 20 kN/m³, c = 0 kPa
  • Limon dense (φ = 28°) :
    • Nc = 25.1, Nq = 16.3, Nγ = 12.5
    • γ = 22 kN/m³, c = 15 kPa

Calcul pour chaque couche:

  • Argile molle :

\[ q_{u, \text{argile}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{argile}} = 20 \cdot 5.7 + 18 \cdot 1.5 \cdot 1 + 0.5 \cdot 18 \cdot 2.5 \cdot 0 \] \[ q_{u, \text{argile}} = 114 + 27 + 0 \] \[ q_{u, \text{argile}} = 141\, \text{kPa} \]

  • Sable fin :

\[ q_{u, \text{sable}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{sable}} = 0 \cdot 30.1 + 20 \cdot 1.5 \cdot 18.4 + 0.5 \cdot 20 \cdot 2.5 \cdot 15.1 \] \[ q_{u, \text{sable}} = 0 + 552 + 377.5 \] \[ q_{u, \text{sable}} = 929.5\, \text{kPa} \]

  • Limon dense :

\[ q_{u, \text{limon}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{limon}} = 15 \cdot 25.1 + 22 \cdot 1.5 \cdot 16.3 + 0.5 \cdot 22 \cdot 2.5 \cdot 12.5 \] \[ q_{u, \text{limon}} = 376.5 + 537.9 + 343.75 \] \[ q_{u, \text{limon}} = 1258.15\, \text{kPa} \]

Capacité portante ultime critique:

La capacité portante ultime la plus basse est celle de l’argile molle :

\[ q_{u, \text{critique}} = 141\, \text{kPa} \]

2. Calcul du tassement de la fondation

La formule de tassement primaire (S) est :

\[ S = \frac{\Delta \sigma}{M_v} \cdot H \]

Augmentation de contrainte (\(\Delta \sigma\)) sous la fondation

Pour une charge appliquée (Q) de 1200 kN et une surface de semelle (A) de 2.5 m x 2.5 m :

\[ \Delta \sigma = \frac{Q}{A} \] \[ \Delta \sigma = \frac{1200}{2.5 \times 2.5} \] \[
\Delta \sigma = 192 \, \text{kPa} \]

Tassement pour chaque couche:

  • Argile molle :

\[ S_{\text{argile}} = \frac{\Delta \sigma}{M_v \text{argile}} \cdot H_{\text{argile}} \] \[ S_{\text{argile}} = \frac{192}{0.5} \cdot 3 \] \[ S_{\text{argile}} = 384 \cdot 3 \] \[ S_{\text{argile}} = 1152 \, \text{mm} \]

  • Sable fin :

\[ S_{\text{sable}} = \frac{\Delta \sigma}{M_v \text{sable}} \cdot H_{\text{sable}} \] \[ S_{\text{sable}} = \frac{192}{1.2} \cdot 5 \] \[ S_{\text{sable}} = 160 \cdot 5 \] \[ S_{\text{sable}} = 800 \, \text{mm} \]

  • Limon dense :

\[ S_{\text{limon}} = \frac{\Delta \sigma}{M_v \text{limon}} \cdot H_{\text{limon}} \] \[ S_{\text{limon}} = \frac{192}{0.8} \cdot 6 \] \[ S_{\text{limon}} = 240 \cdot 6 \] \[ S_{\text{limon}} = 1440 \, \text{mm} \]

Tassement total:

\[ S_{\text{total}} = S_{\text{argile}} + S_{\text{sable}} + S_{\text{limon}} \] \[ S_{\text{total}} = 1152 + 800 + 1440 \] \[ S_{\text{total}} = 3392 \, \text{mm} \]

Conclusion:

  • Capacité portante critique de la semelle est 141 kPa (dictée par l’argile molle).
  • Tassement total estimé de la fondation est 3392 mm.

Des mesures de consolidation et d’amélioration du sol peuvent être nécessaires pour assurer la stabilité et la viabilité du projet de construction.

Capacité Portante et Tassement des Sols

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du pourcentage des particules solides (S)

Calcul du pourcentage des particules solides (S) Comprendre le Calcul du pourcentage des particules solides (S) Vous êtes un ingénieur géotechnique chargé d'analyser la stabilité d'un terrain prévu pour la construction d'un nouveau bâtiment scolaire. Une des étapes...

Calcul du Pourcentage de Vides dans le Sol

Calcul du Pourcentage de Vides dans le Sol Comprendre le Calcul du Pourcentage de Vides dans le Sol Vous êtes ingénieur géotechnicien travaillant sur un projet de construction d'une nouvelle route à travers une région montagneuse. Pour évaluer la stabilité du sol où...

Évaluation de la déformabilité du sol

Évaluation de la déformabilité du sol Comprendre l'évaluation de la déformabilité du sol Vous êtes un ingénieur géotechnicien travaillant sur la conception d'une nouvelle aire de stationnement pour un centre commercial. Le terrain prévu pour le projet est constitué...

Détermination du Coefficient de Tassement (mv)

Détermination du Coefficient de Tassement (mv) Comprendre la Détermination du Coefficient de Tassement (mv) Vous êtes un ingénieur géotechnique chargé de l'étude des fondations pour un nouveau bâtiment commercial qui sera construit sur un site urbain. Le terrain est...

Évaluation du Tassement Total d’une Fondation

Évaluation du Tassement Total d'une Fondation Comprendre l'Évaluation du Tassement Total d'une Fondation Un projet de construction d'un immeuble de grande hauteur est prévu dans une zone urbaine densément peuplée. La zone se caractérise par un sol argileux jusqu'à une...

Conception de Fondations sur Sols Gonflants

Conception de Fondations sur Sols Gonflants Comprendre la Conception de Fondations sur Sols Gonflants Vous êtes un ingénieur géotechnicien chargé de concevoir les fondations d'une nouvelle bibliothèque municipale dans une région connue pour ses sols gonflants. Les...

Gestion du Risque d’Érosion pour un Projet

Gestion du Risque d'Érosion pour un Projet Comprendre la Gestion du Risque d'Érosion pour un Projet Un projet de construction d'une route de montagne est en cours dans une région où l'érosion des sols est préoccupante. La pente des collines avoisinantes et les...

Calcul le tassement d’un Sol Après un An

Calcul le tassement d'un Sol Après un An Comprendre le Calcul le tassement d'un Sol Après un An Vous êtes ingénieur géotechnique et devez évaluer le tassement potentiel d'un sol argileux sous une nouvelle construction. La construction est un bâtiment de bureau de 5...

Pressions de Terre au Repos et en Mouvement

Pressions de Terre au Repos et en Mouvement Comprendre les Pressions de Terre au Repos et en Mouvement Vous êtes chargé de concevoir un mur de soutènement pour une tranchée de 6 mètres de profondeur destinée à l'installation de conduites souterraines. Le sol est...

Vérification du non-glissement d’une fondation

Vérification du non-glissement d'une fondation Comprendre la vérification du non-glissement d'une fondation: Une entreprise de construction projette de construire un bâtiment de trois étages dans une zone à sol argileux. Avant de démarrer la construction, il est...