Calcul l’effort tranchant et le moment

Calcul l’effort tranchant et le moment

Comprendre le calcul l’effort tranchant et le moment :

Vous êtes ingénieur en structure et vous devez analyser une poutre simplement appuyée. Cette poutre supporte plusieurs charges réparties et concentrées.

Données

  • Longueur de la poutre, : 6 m
  • Une charge uniformément répartie de 3 kN/m sur toute la longueur de la poutre.
  • Une charge ponctuelle de 10 kN appliquée à 2 m du support gauche.
  • Une charge ponctuelle de 5 kN appliquée à 4 m du support gauche.
    calcul l’effort tranchant et le moment

    Questions

    1. Réaction aux Appuis : Calculez les réactions aux appuis de la poutre.
    2. Effort Tranchant :
      • Tracez le diagramme de l’effort tranchant pour la poutre.
      • Calculez l’effort tranchant à 1 m, 3 m et 5 m de l’extrémité gauche.
    3. Moment Fléchissant :
      • Tracez le diagramme du moment fléchissant pour la poutre.
      • Calculez le moment fléchissant à 1 m, 3 m et 5 m de l’extrémité gauche.
    4. Point de Moment Maximal : Déterminez la position et la valeur du moment maximal dans la poutre.

    Indications

    • Considérez la poutre comme étant en équilibre statique.
    • Utilisez les principes de la mécanique des milieux continus pour résoudre l’exercice.
    • N’oubliez pas que l’effort tranchant change aux points où il y a des charges appliquées.

    Correction : Calcul l’effort tranchant et moment

    1. Réaction aux Appuis

    Pour une poutre simplement appuyée, les réactions aux appuis sont calculées en utilisant l’équilibre statique.

    • Équilibre Vertical :
      \begin{equation*}
      \sum F_y = 0
      \end{equation*}
    • Équilibre de Moment :
      \begin{equation*}
      \sum M = 0
      \end{equation*}

    Soient \( R_A \) et \( R_B \) les réactions aux appuis gauche et droit, respectivement.

    • Charge totale due à la distribution uniforme :
      \begin{equation*}
      3 \, \text{kN/m} \times 6 \, \text{m} = 18 \, \text{kN}.
      \end{equation*}
    • La force résultante de la charge distribuée agit au centre de la poutre, soit à 3 m de chaque appui.
    • Application des équations d’équilibre :
      \begin{align*}
      R_A + R_B &= 18 \, \text{kN} + 10 \, \text{kN} + 5 \, \text{kN} \\
      R_A + R_B &= 33 \, \text{kN}
      \end{align*}

    Pour le moment (en prenant le moment autour de A) :

    \(R_B \times 6 \, \text{m} = 18 \, \text{kN} \times 3 \, \text{m} + 10 \, \text{kN} \times 2 \, \text{m} + 5 \, \text{kN} \times 4 \, \text{m}\)
    \begin{align*} R_B &= \frac{54 + 20 + 20}{6} \, \text{kN} \\
    R_B &= 15.67 \, \text{kN} \\
    R_A &= 33 – 15.67 = 17.33 \, \text{kN}
    \end{align*}

    2. Effort Tranchant \(V(x)\)

    • 0 – 2 m :

    \(V(x)\) commence à 17.33 kN à l’appui A.

    À 2 m, \(V(x) = 17.33 – 3 \times 2 = 11.33 \, \text{kN}\).

    • À 2 m (charge ponctuelle) :

    \(V(x)\) chute de 10 kN à \(1.33 \, \text{kN}\).

    • 2 – 4 m :

    \(V(x)\) continue de diminuer en raison de la charge distribuée.

    Juste avant 4 m, \(V(x) = 1.33 – 3 \times 2 = -4.67 \, \text{kN}\).

    • À 4 m (charge ponctuelle) :

    \(V(x)\) chute de 5 kN à \(-9.67 \, \text{kN}\).

    • 4 – 6 m :

    À l’appui B, \(V(x)\) est de -15.67 kN, en accord avec \(R_B\).

    3. Moment Fléchissant \(M(x)\)

    • 0 – 2 m :

    Le moment augmente linéairement puis de manière quadratique à cause de la charge distribuée.

    À 1 m :

    \(M(1) = 17.33 \times 1 – 3 \times \frac{1}{2} \times 1^2 = 15.83 \, \text{kNm}\).

    • 2 – 4 m :

    Le moment continue d’augmenter, atteignant un maximum où \(V(x) = 0\).

    Trouvons où \(V(x) = 0\) entre 2 m et 4 m :

    Équation de l’effort tranchant dans cette section : \(V(x) = 1.33 – 3 \times (x – 2)\).
    Trouver \(x\) tel que \(V(x) = 0\) :
    \begin{align*}
    0 &= 1.33 – 3 \times (x – 2) \\
    3x – 6 &= 1.33 \\
    x &\approx 2.44 \, \text{m}
    \end{align*}

    • Calcul du moment à \(x = 2.44 \, \text{m}\) :
      \( M(2.44) = 17.33 \times 2.44 – 3 \times \frac{2.44^2}{2} – 10 \times (2.44 – 2) \)
      \( M(2.44) \approx 19.22 \, \text{kNm} \quad \text{(valeur approximative)} \)
    • 4 – 6 m :

    À 5 m :

    \( M(5) = 15.67 \times (6 – 5) – 3 \times \frac{1}{2} \times 1^2 = 14.17 \, \text{kNm} \).

    4. Point de Moment Maximal

    Le moment maximal se produit à environ \( x = 2.44 \, \text{m} \) de l’appui gauche, avec une valeur d’environ 19.22 kNm.

    Diagramme de l’effort tranchant et du moment fléchissant

    calcul l’effort tranchant et le moment

    D’autres exercices de résistance des matériaux :

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    3 Commentaires

    1. Aurélien B.

      Bonjour,
      Je suis en BUT GCCD 1ère année et j’ai du mal avec mes exercices de mécanique des structures, pour déterminer Vy ainsi que Mz à toute distance sur la poutre il nous est demandé de les déterminer en fonction de « x », je n’y arrive pas.
      On arrive en fin de semestre et je n’ai plus TD mais les partiels arrivent à grand pas, serait-il possible d’en discuter par mail ?

      Merci.
      Cordialement Aurélien B.

      Réponse

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Calcul de la contrainte de flexion

    Calcul de la contrainte de flexion Comprendre le Calcul de la contrainte de flexion Un ingénieur en génie civil doit concevoir une poutre en acier pour soutenir un plancher dans un bâtiment commercial. La poutre doit supporter une charge uniformément répartie...

    Déformation de Différentes Sections Transversales

    Déformation de Différentes Sections Transversales Comprendre la Déformation de Différentes Sections Transversales Un projet de construction d'un petit pont piétonnier en milieu urbain. Ce pont doit supporter à la fois son propre poids et la charge des piétons. Nous...

    Propriétés mécaniques des matériaux

    Propriétés Mécaniques des Matériaux Contexte sur les propriétés mécaniques des matériaux Vous êtes un ingénieur travaillant sur la conception d'une poutre pour un petit pont. La poutre est faite d'un acier standard, et elle doit supporter une charge uniformément...

    Cercle de Mohr : Exercice – Corrigé

    Cercle de Mohr : Exercice - Corrigé Contexte de calcul Une poutre est soumise à des contraintes plane. À un certain point de cette poutre, les contraintes normales sur les faces horizontales et verticales sont \( \sigma_x = 8 \text{ MPa} \) et \( \sigma_y = 4 \text{...

    Réactions d’Appui et Efforts Internes

    Réactions d'Appui et Efforts Internes Comprendre les Réactions d'Appui et Efforts Internes Considérons une poutre encastrée-libre d'une longueur L = 6 m. La poutre est soumise à une charge uniformément répartie q = 2 kN/m sur toute sa longueur, ainsi qu'à une charge...

    Calculer la variation de longueur des poutres

    Calculer la variation de longueur des poutres Comprendre comment Calculer la variation de longueur des poutres Considérons une passerelle métallique utilisée pour le passage piétonnier au-dessus d'une voie ferrée. La passerelle est soutenue par deux poutres en acier...

    Charge Critique de Flambement

    Charge Critique de Flambement Comprendre la Charge Critique de Flambement Dans une entreprise de construction, un ingénieur doit concevoir une colonne verticale légère qui supportera une charge axiale. La colonne est en acier avec un module d'élasticité E de 200 GPa....

    Torsion dans une Poutre en T

    Torsion dans une Poutre en T Comprendre la Torsion dans une Poutre en T Vous êtes un ingénieur en structure chargé de concevoir un élément de support en forme de T pour une installation industrielle. Cette poutre en T sera soumise à un moment de torsion dû aux...

    Méthode des Nœuds pour un Treillis

    Méthode des Nœuds pour un Treillis Comprendre la Méthode des Nœuds pour un Treillis Considérons un treillis plan en forme de triangle, composé de trois nœuds et trois éléments (barres). Le treillis est fixé au sol à l'un de ses nœuds (nœud A) et est supporté par un...

    Calcul de la torsion d’un poteau

    Calcul de la torsion d'un poteau Comprendre le Calcul de la torsion d'un poteau Un ingénieur en génie civil doit concevoir un poteau de soutien pour un pont. Ce poteau doit être capable de résister à des moments de torsion générés par les forces du vent et les charges...