Calcul de la contrainte de cisaillement

Calcul de la contrainte de cisaillement

Comprendre le Calcul de la contrainte de cisaillement

Un bureau d’études en génie civil travaille sur la conception d’un pont piétonnier. La structure du pont est simplifiée à une poutre en acier de longueur L posée sur deux appuis simples (A et B) situés respectivement à chaque extrémité de la poutre.

La poutre doit supporter une charge uniformément répartie q (en N/m) due au poids des piétons ainsi qu’une charge concentrée P (en Newtons) située à une distance a de l’appui A.

Pour comprendre le calcul du Cisaillement simple d’un axe, cliquez sur le lien.

Données:

  • Longueur de la poutre, L = 10 m
  • Charge uniformément répartie, q = 5 kN/m
  • Charge concentrée, P = 25 kN
  • Distance de la charge concentrée de l’appui A, a = 4 m

Hypothèses:

  • La poutre est considérée comme un élément linéaire, sans poids propre.
  • Les appuis en A et B permettent des rotations libres et n’offrent pas de résistance au moment fléchissant.
  • Négligez les effets de flexion dans le calcul de la contrainte de cisaillement.
    Calcul de la contrainte de cisaillement

    Questions:

    1. Calcul des réactions d’appui en A et B:

    • Déterminez les réactions d’appui en A et B en considérant les équilibres verticaux et le moment autour de l’un des appuis.

    2. Calcul de la contrainte de cisaillement:

    • Calculez la contrainte de cisaillement à une section située à x = 3 m de l’appui A.
    • Pour cet exercice, considérez que l’aire de la section transversale de la poutre est de 0.02 m².

    Correction : Calcul de la contrainte de cisaillement

    1. Calcul des Réactions d’Appui en A et B

    • La réaction verticale due à la charge uniformément répartie est:

    \[ = q \times L \] \[ = 5 \, \text{kN/m} \times 10 \, \text{m} = 50 \, \text{kN} \], agissant au milieu de la poutre, soit à 5 m de chaque appui.

    • La charge concentrée P est de 25 kN, située à 4 m de l’appui A.

    Pour trouver les réactions d’appui, nous équilibrerons les moments autour de l’appui B (pour trouver RA) et autour de l’appui A (pour trouver RB), puis vérifierons l’équilibre vertical.

    Moment autour de B :

    \[ \Sigma M_B = 0 = R_A \times L – q \times L \times \frac{L}{2} – P \times (L – a) \] \[ 0 = R_A \times 10 – 50 \times 5 – 25 \times (10 – 4) \] \[ R_A = \frac{50 \times 5 + 25 \times 6}{10} \] \[ R_A = \frac{400}{10} = 40 \, \text{kN} \]

    Moment autour de A :

    Nous utilisons l’équilibre vertical pour trouver RB :

    \[ \Sigma F_y = 0 = R_A + R_B – q \times L – P \] \[ R_B = q \times L + P – R_A \] \[ R_B = 50 + 25 – 40 = 35 \, \text{kN} \]

    2. Calcul de la Contrainte de Cisaillement à x = 3 m

    Calcul de la force de cisaillement V à x = 3 m

    Pour x = 3 m, la force de cisaillement V dans la section est due à la réaction d’appui en A moins la charge uniformément répartie agissant sur cette section de 3 m.

    \[ V = R_A – q \times x \] \[ V = 40 \, \text{kN} – 5 \, \text{kN/m} \times 3 \, \text{m} \] \[ V = 40 \, \text{kN} – 15 \, \text{kN} \] \[ V = 25 \, \text{kN} \]

    Calcul de la contrainte de cisaillement \(\tau\)

    • L’aire de la section transversale A = 0.02 m².

    \[ \tau = \frac{V}{A} = \frac{25 \, \text{kN}}{0.02 \, \text{m}^2} \] \[ \tau = \frac{25000 \, \text{N}}{0.02 \, \text{m}^2} \] \[ \tau = 1250000\, \text{N/m}^2 \] \[ \tau = 1250 \, \text{kPa} \]

    Conclusion:

    Les réactions d’appui sont RA = 40 kN et RB = 35 kN, montrant que les réactions d’appui ne sont pas égales.

    À une distance de 3 m de l’appui A, la contrainte de cisaillement dans la poutre est de 1250 kPa.

    Diagramme de cisaillement

    Calcul de la contrainte de cisaillement

    Calcul de la contrainte de cisaillement

    D’autres exercices de Rdm:

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Calcul de l’axe neutre en RDM

    CALCUL DE L’AXE NEUTRE EN RDM Comprendre le calcul de l'axe neutre en rdm Vous êtes un ingénieur en structure chargé de concevoir un pont en poutre. Pour garantir la sécurité et l'efficacité de la structure, il est crucial de déterminer la position de l'axe neutre de...

    Calcul des réactions d’appui

    Calcul des réactions d'appui Comprendre le calcul des réactions d'appui Vous êtes un ingénieur chargé de concevoir un pont pour une nouvelle route. Le pont doit être capable de supporter une charge uniformément répartie ainsi que des charges concentrées dues à des...

    Module d’Élasticité et de Résistance sous Charge

    Module d'Élasticité et de Résistance sous Charge Comprendre le calcul module d'Élasticité et de Résistance sous Charge Vous êtes un ingénieur travaillant sur la conception d'une passerelle piétonne. Cette passerelle doit être construite en acier et être capable de...

    Calcul de la contrainte tangentielle

    Calcul de la contrainte tangentielle Comprendre le calcul de la contrainte tangentielle Une poutre en acier, encastrée à une extrémité, est soumise à un chargement uniformément réparti le long de sa longueur. Longueur de la poutre (L) : 6 mètres. Largeur de la poutre...

    Contraintes en fibres extrêmes et intermédiaires

    Contraintes en fibres extrêmes et intermédiaires Comprendre la contraintes en fibres extrêmes et intermédiaires Vous êtes ingénieur en structure et devez analyser une poutre en acier soumise à une charge uniformément répartie. La poutre a une section transversale...

    Calcul des Contraintes Principales

    Calcul des Contraintes Principales Comprendre le calcul des Contraintes Principales Dans un projet de construction d'un pont, les ingénieurs doivent évaluer la sécurité de la structure sous différentes charges. Un élément structurel clé, une poutre en acier, est...

    Cisaillement dans une poutre

    Cisaillement dans une poutre Comprendre le cisaillement dans une poutre Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées. L'objectif est de...

    Comportement plastique et la rupture

    Comportement plastique et la rupture Comprendre le comportement plastique et la rupture Un ingénieur conçoit une poutre en acier pour supporter une charge dans une construction industrielle. L'acier a un comportement élastoplastique et l'ingénieur doit s'assurer que...

    La loi de Hooke calcul

    La loi de Hooke Exercice corrigé Comprendre le calcul selon la loi de Hooke Dans un laboratoire de mécanique, un ingénieur teste la résilience d'un ressort en acier. Il souhaite comprendre comment le ressort réagit sous différentes charges et jusqu'à quel point il...

    Comportement d’un Matériau sous Charge

    Comportement d'un Matériau sous Charge Comprendre le comportement d'un Matériau sous Charge Un barreau en acier (considéré comme un matériau isotrope et homogène) de longueur initiale \(L_0\) et de diamètre \(d_0\) est soumis à une charge de traction axiale. Pour...