Analyse de la Stabilité d’un Pylône

Analyse de la Stabilité d’un Pylône

Comprendre l’Analyse de la Stabilité d’un Pylône

Un ingénieur structure doit concevoir un pylône de transmission électrique en acier. La conception doit assurer que le pylône peut résister aux charges dues au vent et au poids des câbles électriques sans flamber.

L’ingénieur doit calculer la résistance au flambement latéral de la section transversale du pylône pour s’assurer que la structure est suffisamment solide.

Pour comprendre la Vérification de l’équilibre des forces verticales, cliquez sur le lien.

Données de l’Exercice:

  • Matériau: Acier, avec un module d’élasticité E = 210 GPa et un module de cisaillement G = 80 GPa.
  • Section transversale du pylône: Forme circulaire, diamètre extérieur D = 300 mm, épaisseur de la paroi t = 10 mm.
  • Hauteur du pylône: L = 10 m.
  • Charge critique de flambement latéral: À déterminer.

Questions:

1. Calculer le moment d’inertie de la section transversale I et le rayon de giration r.

2. Déterminer la charge critique de flambement latéral \(P_{\text{cr}}\) en utilisant la formule d’Euler pour le flambement, en considérant les conditions de fixation aux extrémités comme étant encastrées-libres.

3. Évaluer si le pylône peut résister à une charge de vent latéral estimée à \(F_{\text{vent}} = 15\, \text{kN}\) sans risque de flambement.

Correction : Analyse de la Stabilité d’un Pylône

1. Calcul du Moment d’Inertie et du Rayon de Giration

Moment d’inertie (I) de la section transversale:

Le moment d’inertie est une mesure de la résistance d’une section à la flexion et au flambement. Pour une section circulaire creuse, il est donné par la formule:

\[ I = \frac{\pi}{64} \left(D^4 – (D – 2t)^4\right) \]

En substituant les valeurs données:

  • D = 0.3 m (diamètre extérieur)
  • t = 0.01 m (épaisseur de la paroi)

\[ I = \frac{\pi}{64} \left(0.3^4 – (0.3 – 2 \times 0.01)^4\right) \] \[ I = 9.59 \times 10^{-5} \, \text{m}^4 \]

Cela signifie que le moment d’inertie de la section est de \(9.59 \times 10^{-5} \, \text{m}^4\), indiquant comment la masse est distribuée dans la section transversale par rapport à son axe neutre.

Rayon de giration (r):

Le rayon de giration indique une distribution effective du matériau autour de l’axe et est crucial pour évaluer la tendance au flambement.

Il est calculé comme suit:

\[ r = \sqrt{\frac{I}{A}} \]

Avec A étant l’aire de la section transversale, calculée par:

\[ A = \frac{\pi}{4} \left(D^2 – (D – 2t)^2\right) \] \[ A = \frac{\pi}{4} \left(0.3^2 – (0.3 – 2 \times 0.01)^2\right) \] d’où:  \[ A = 0.0091 \, \text{m}^2 \]

Ensuite, le rayon de giration est:

\[ r = \sqrt{\frac{9.59 \times 10^{-5}}{0.0091}} \] ce qui donne: \[ r = 0.1026 \, \text{m} \]

Ce qui reflète la compacité de la section en termes de sa résistance au flambement.

2. Calcul de la Charge Critique de Flambement Latéral

La charge critique de flambement (\(P_{\text{cr}}\)) est la charge maximale que la colonne peut supporter avant de flamber. Elle est calculée à l’aide de la formule d’Euler pour le flambement, adaptée pour une colonne encastrée-libre:

\[ P_{\text{cr}} = \frac{\pi^2 E I}{(K L)^2} \]

où E est le module d’élasticité de l’acier (\(210 \, \text{GPa}\)), K le facteur de longueur effective (2 pour encastrée-libre), et L la hauteur du pylône (\(10 \, \text{m}\)).

Ainsi, la charge critique de flambement est:

\[ = \frac{\pi^2 \times 210 \times 10^9 \times 9.59 \times 10^{-5}}{(2 \times 10)^2} \] ce qui donne: \[ P_{cr} = 496,854 \, \text{N} \]

Cette valeur représente la capacité de charge maximale avant le flambement, offrant un critère pour évaluer la sécurité de la structure.

3. Évaluation de la Résistance au Flambement

En comparant la charge critique de flambement (\(P_{\text{cr}} = 496,854 \, \text{N}\)) à la charge de vent latéral (\(F_{\text{vent}} = 15,000 \, \text{N}\)), nous constatons que \(P_{\text{cr}}\) est largement supérieure à \(F_{\text{vent}}\).

Cela signifie que le pylône est suffisamment robuste pour résister au vent latéral sans risquer de flamber.

Conclusion:

L’analyse montre que le pylône de transmission électrique est conçu pour être stable et sûr sous l’effet des charges latérales dues au vent, avec une marge de sécurité significative contre le flambement.

Analyse de la Stabilité d’un Pylône

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul de l’axe neutre en RDM

CALCUL DE L’AXE NEUTRE EN RDM Comprendre le calcul de l'axe neutre en rdm Vous êtes un ingénieur en structure chargé de concevoir un pont en poutre. Pour garantir la sécurité et l'efficacité de la structure, il est crucial de déterminer la position de l'axe neutre de...

Calcul des réactions d’appui

Calcul des réactions d'appui Comprendre le calcul des réactions d'appui Vous êtes un ingénieur chargé de concevoir un pont pour une nouvelle route. Le pont doit être capable de supporter une charge uniformément répartie ainsi que des charges concentrées dues à des...

Module d’Élasticité et de Résistance sous Charge

Module d'Élasticité et de Résistance sous Charge Comprendre le calcul module d'Élasticité et de Résistance sous Charge Vous êtes un ingénieur travaillant sur la conception d'une passerelle piétonne. Cette passerelle doit être construite en acier et être capable de...

Calcul de la contrainte tangentielle

Calcul de la contrainte tangentielle Comprendre le calcul de la contrainte tangentielle Une poutre en acier, encastrée à une extrémité, est soumise à un chargement uniformément réparti le long de sa longueur. Longueur de la poutre (L) : 6 mètres. Largeur de la poutre...

Contraintes en fibres extrêmes et intermédiaires

Contraintes en fibres extrêmes et intermédiaires Comprendre la contraintes en fibres extrêmes et intermédiaires Vous êtes ingénieur en structure et devez analyser une poutre en acier soumise à une charge uniformément répartie. La poutre a une section transversale...

Calcul des Contraintes Principales

Calcul des Contraintes Principales Comprendre le calcul des Contraintes Principales Dans un projet de construction d'un pont, les ingénieurs doivent évaluer la sécurité de la structure sous différentes charges. Un élément structurel clé, une poutre en acier, est...

Cisaillement dans une poutre

Cisaillement dans une poutre Comprendre le cisaillement dans une poutre Vous êtes ingénieur en structure et vous devez analyser une poutre en acier simplement appuyée qui supporte une charge uniformément répartie ainsi que des charges concentrées. L'objectif est de...

Comportement plastique et la rupture

Comportement plastique et la rupture Comprendre le comportement plastique et la rupture Un ingénieur conçoit une poutre en acier pour supporter une charge dans une construction industrielle. L'acier a un comportement élastoplastique et l'ingénieur doit s'assurer que...

La loi de Hooke calcul

La loi de Hooke Exercice corrigé Comprendre le calcul selon la loi de Hooke Dans un laboratoire de mécanique, un ingénieur teste la résilience d'un ressort en acier. Il souhaite comprendre comment le ressort réagit sous différentes charges et jusqu'à quel point il...

Comportement d’un Matériau sous Charge

Comportement d'un Matériau sous Charge Comprendre le comportement d'un Matériau sous Charge Un barreau en acier (considéré comme un matériau isotrope et homogène) de longueur initiale \(L_0\) et de diamètre \(d_0\) est soumis à une charge de traction axiale. Pour...