Études de cas pratique

EGC

Application de la Loi de Pascal

Application de la Loi de Pascal

Comprendre l’application de la Loi de Pascal 

Vous êtes ingénieur(e) en mécanique et travaillez sur la conception d’un système hydraulique pour une nouvelle presse industrielle.

Cette presse utilise un fluide pour transmettre la force nécessaire à l’écrasement de matériaux. Vous devez vous assurer que le système est correctement dimensionné pour résister à la pression requise.

Données :

  1. La presse doit exercer une force totale de 5000 N.
  2. Le piston principal qui exerce la force a une surface de 0,015 m².
  3. Le système hydraulique est rempli d’huile (considérez la densité de l’huile comme étant 850 kg/m³).
  4. La presse est connectée à un petit piston, dont la surface est de 0,0025 m².
  5. La hauteur de la colonne d’huile dans le système est de 1,2 m.

Questions :

  1. Calculez la pression exercée par le grand piston sur le fluide.
  2. En utilisant la Loi de Pascal, déterminez la force exercée par le petit piston.
  3. Calculez la pression additionnelle due au poids de la colonne d’huile.
  4. Déterminez si le petit piston peut générer la force requise, en tenant compte de la pression additionnelle due au poids de l’huile.

Correction : application de la Loi de Pascal

1. Calcul de la Pression Exercée par le Grand Piston

Formule:

\[ P = \frac{F}{A} \]

Données:

  • Force (F) = 5000 N
  • Surface du grand piston (A) = 0,015 m\(^2\)

Calcul:

\[ P = \frac{5000}{0,015} \] \[ P = 333333,33 \text{ Pa (Pascals)} \]

2. Force Exercée par le Petit Piston en Utilisant la Loi de Pascal

Formule:

\[ F = P \times A \]

Données:

  • Pression (P) = 333333,33 Pa (calculée précédemment)
  • Surface du petit piston (A) = 0,0025 m\(^2\)

Calcul:

\[ F = 333333,33 \times 0,0025 \] \[ F = 833,33 \text{ N} \]

3. Pression Additionnelle due au Poids de la Colonne d’Huile

Formule:

\[ P = h \cdot \rho \cdot g \]

Données:

  • Hauteur du fluide (h) = 1,2 m
  • Densité de l’huile (ρ) = 850 kg/m\(^3\)
  • Accélération due à la gravité (g) = 9,81 m/s\(^2\)

Calcul:

\[ P = 1,2 \times 850 \times 9,81 \] \[ P = 9995,82 \text{ Pa} \]

4. Capacité du Petit Piston à Générer la Force Requise

Calcul de la pression totale:

\[ P_{\text{totale}} = 333333,33 + 9995,82 \] \[ P_{\text{totale}} = 343329,15 \text{ Pa} \]

Force générée par le petit piston avec la pression totale:

\[ F = 343329,15 \times 0,0025 \] \[ F = 858,32 \text{ N} \]

Conclusion :

Le petit piston peut générer une force de 858,32 N, ce qui est supérieur à la force de 833,33 N requise pour équilibrer la force du grand piston.

Donc, le système est capable de générer la force nécessaire.

Application de la Loi de Pascal 

D’autres exercices d’hydraulique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Débit Volumique en Hydraulique

Calcul du Débit Volumique en Hydraulique Comprendre le Calcul du Débit Volumique en Hydraulique Dans le cadre de la conception d'un nouveau système d'irrigation pour un terrain agricole, il est essentiel de déterminer le débit volumique de l'eau qui sera canalisé à...

Calcul du Rayon Hydraulique

Calcul du Rayon Hydraulique Comprendre le Calcul du Rayon Hydraulique Dans un système d'irrigation agricole, un canal rectangulaire semi-artificiel est utilisé pour transporter l'eau depuis une source principale vers les champs. Le canal a une largeur constante et une...

Calcul du facteur de friction de Darcy-Weisbach

Calcul du facteur de friction de Darcy-Weisbach Comprendre le Calcul du facteur de friction de Darcy-Weisbach Dans une installation industrielle, un fluide est transporté à travers un tuyau horizontal de 500 mètres de longueur. Le tuyau est en acier commercial avec un...

Calcul du Coefficient de Frottement

Calcul du Coefficient de Frottement Comprendre le calcul du coefficient de Frottement dans le tuyau Un ingénieur travaille sur la conception d'un système de tuyauterie pour transporter de l'eau à travers une usine de traitement. Pour optimiser la conception,...

Stockage de l’eau potable

Stockage de l'eau potable Comprendre le stockage de l'eau potable La ville de Clairville souhaite améliorer son système de stockage de l'eau potable. Actuellement, la ville dispose de trois réservoirs, chacun avec des capacités différentes. Pour optimiser...

Équations d’Euler et de Bernoulli

Équations d'Euler et de Bernoulli Comprendre l'Équations d'Euler et de Bernoulli Considérons un fluide incompressible s'écoulant dans un tube horizontal de diamètres différents. Le diamètre du tube à l'entrée est de D1 = 0.5 mètres et à la sortie est de D2 = 0.25...

Forces exercées par l’eau sur les portes

Forces exercées par l’eau sur les portes Calcul des Forces exercées par l’eau sur les portes de l'écluse Vous êtes ingénieur hydraulique et travaillez sur la conception d'une nouvelle écluse. Il est crucial de comprendre les forces exercées par l'eau sur les portes de...

Gestion des Eaux Pluviales hydraulique

Gestion des eaux pluviales hydraulique Comprendre la gestion des eaux pluviales hydraulique : Un ingénieur hydraulique doit concevoir un système de drainage pour un nouveau lotissement. Le terrain a une superficie de 2 hectares (20 000 m²) et se situe dans une région...

Poussée d’archimède dans l’eau

Poussée d'archimède dans l'eau Comprendre la Poussée d'archimède dans l'eau Un ingénieur en génie civil doit concevoir un pont flottant pour une rivière. Pour cela, il envisage d'utiliser des cylindres en béton comme flotteurs. Cependant, il doit d'abord s'assurer que...

Analyse de l’Écoulement dans une Conduite

Analyse de l'Écoulement dans une Conduite Comprendre l'analyse de l'Écoulement dans une Conduite Une conduite d'eau horizontale de diamètre D = 0.5 m et de longueur L = 100 m transporte de l'eau à une température de 20°C. La viscosité cinématique de l'eau à cette...