Équations d’Euler et de Bernoulli

Équations d’Euler et de Bernoulli

Comprendre l’Équations d’Euler et de Bernoulli

Considérons un fluide incompressible s’écoulant dans un tube horizontal de diamètres différents. Le diamètre du tube à l’entrée est de D1 = 0.5 mètres et à la sortie est de D2 = 0.25 mètres.

Le fluide entre dans le tube avec une vitesse V1 = 2 m/s. La pression atmosphérique est de \( P_{\text{atm}} = 101325 \) Pa.

La densité du fluide est de \( \rho = 1000 \) kg/m\(^3\). On néglige les effets de viscosité.

Objectif :

Calculer la vitesse du fluide à la sortie du tube et la variation de la pression entre l’entrée et la sortie du tube.

Correction : Équations d’Euler et de Bernoulli

Étape 1 : Calcul des Aires et de la Vitesse à la Sortie

1. Calcul des Aires :

  • Pour \(A_1\) (aire de l’entrée) :

\[ A_1 = \pi \times \left(\frac{D_1}{2}\right)^2 \] \[ A_1 = \pi \times \left(\frac{0.5}{2}\right)^2 \] \[ A_1 = \pi \times 0.25^2 \, \text{m}^2 \]
\[ A_1 = \pi \times 0.0625 \, \text{m}^2 \]

  • Pour \(A_2\) (aire de la sortie) :

\[ A_2 = \pi \times \left(\frac{D_2}{2}\right)^2 \] \[ A_2 = \pi \times \left(\frac{0.25}{2}\right)^2 \] \[ A_2 = \pi \times 0.125^2 \, \text{m}^2 \]
\[ A_2 = \pi \times 0.015625 \, \text{m}^2 \]

2. Calcul de la Vitesse à la Sortie \(V_2\) :

En appliquant l’équation de continuité \(A_1 V_1 = A_2 V_2\) :

\[ V_2 = \frac{A_1}{A_2} \times V_1 \] \[ V_2 = \frac{\pi \times 0.0625}{\pi \times 0.015625} \times 2 \, \text{m/s} \]
\[ V_2 = \frac{0.0625}{0.015625} \times 2 \, \text{m/s} \]
\[ V_2 = 4 \times 2 \, \text{m/s} = 8 \, \text{m/s} \]

Étape 2 : Calcul de la Pression à la Sortie

1. Application de l’Équation de Bernoulli :

En utilisant \[P_1 + \frac{1}{2} \rho V_1^2 = P_2 + \frac{1}{2} \rho V_2^2\] :

\[101325 \, \text{Pa} + \frac{1}{2} \times 1000 \, \text{kg/m}^3 \times (2 \, \text{m/s})^2 = P_2 + \frac{1}{2} \times 1000 \, \text{kg/m}^3 \times (8 \, \text{m/s})^2\] \[ 101325 \, \text{Pa} + 2000 \, \text{Pa} = P_2 + 32000 \, \text{Pa} \] \[ 103325 \, \text{Pa} = P_2 + 32000 \, \text{Pa} \]

Résolution pour \( P_2 \):

\[ P_2 = 103325 \, \text{Pa} – 32000 \, \text{Pa} \] \[ P_2 = 71325 \, \text{Pa} \]

Conclusion :

La vitesse du fluide à la sortie du tube est \(V_2 = 8 \, \text{m/s}\). La variation de la pression entre l’entrée et la sortie du tube est \( P_1 – P_2 = 101325 \, \text{Pa} – 71325 \, \text{Pa} = 30000 \, \text{Pa} \).

Équations d’Euler et de Bernoulli

D’autres exercices d’hydraulique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Conservation de la masse pour un fluide

Conservation de la masse pour un fluide Comprendre la Conservation de la masse pour un fluide Considérons un système de tuyauterie utilisé dans une installation de traitement des eaux. L'eau s'écoule à travers une série de tuyaux de diamètres différents, reliant un...

Évaluer la Qualité de l’Eau

Évaluer la Qualité de l’Eau Comprendre comment Évaluer la Qualité de l’Eau Vous êtes un ingénieur environnemental chargé d'assurer la qualité de l'eau potable pour une communauté. Dans le cadre de vos responsabilités, vous effectuez des prélèvements d'eau à différents...

Analyser les forces exercées par un fluide

Analyser les forces exercées par un fluide Comprendre l'Analyser les forces exercées par un fluide Vous êtes un ingénieur hydraulique dans une entreprise spécialisée dans la conception et la construction de réservoirs destinés à stocker de l'eau potable. Votre mission...

Traitement de l’eau potable

Traitement de l'eau potable Comprendre le traitement de l'eau potable Vous êtes ingénieur en traitement de l'eau et travaillez sur la conception d'une station de traitement d'eau pour une petite ville. La source d'eau est un lac local. Objectifs: Filtration : La...

Analyse de la Poussée Hydrostatique

Analyse de la Poussée Hydrostatique Comprendre l'Analyse de la Poussée Hydrostatique Vous êtes ingénieur(e) en hydraulique et vous travaillez sur le projet de conception d'un barrage. Le barrage est sujet à une pression de l'eau qui varie avec la profondeur. Votre...

Étude de la Pression Hydrostatique

Étude de la Pression Hydrostatique Comprendre l'Étude de la Pression Hydrostatique Dans le cadre de la conception d'une écluse fluviale, un ingénieur doit déterminer les forces exercées par l'eau sur les portes de l'écluse lorsqu'elles sont fermées. Cela est crucial...

Réseau de Distribution d’Eau Potable

Réseau de Distribution d'Eau Potable Comprendre le Réseau de Distribution d'Eau Potable La ville de Claraville envisage d'étendre son réseau de distribution en eau potable pour desservir un nouveau quartier résidentiel en développement. Ce quartier, nommé "Les Jardins...

Calcul du Temps de Séjour de l’Eau

Calcul du Temps de Séjour de l’Eau Comprendre le Calcul du Temps de Séjour de l’Eau La commune de Fontclair dispose d’un réservoir de distribution d'eau potable qui alimente la ville. Le service municipal de l'eau souhaite optimiser le traitement et la distribution de...

Calcul du coefficient de pointe horaire

Calcul du coefficient de pointe horaire Comprendre le Calcul du coefficient de pointe horaire Dans une petite municipalité, la gestion de la consommation d'eau potable est cruciale pour assurer un approvisionnement constant et efficace à tous les résidents. Pour...

Calcul du coefficient de sécurité d’anti-glissement

Calcul du coefficient de sécurité d'anti-glissement Comprendre le Calcul du coefficient de sécurité d'anti-glissement Un barrage en béton gravitaire est construit sur une rivière pour réguler le débit d'eau et générer de l'électricité. Pour assurer la stabilité du...