Charges, contraintes et déformations

Calculer les charges, contraintes, déformations

Comprendre les charges, contraintes et déformations

Une poutre en acier simplement appuyée aux deux extrémités. Cette poutre est soumise à une charge uniformément répartie (charge distribuée) ainsi qu’à une charge ponctuelle située au milieu de sa longueur.

Pour comprendre le Calcul des déformations dans une poutre, cliquez sur le lien.

Données

  • Longueur de la poutre, \( L \): 6 mètres.
  • Module d’élasticité de l’acier, \( E \): 200 GPa (GigaPascals).
  • Moment d’inertie de la section de la poutre, \( I \): \( 4 \times 10^{-6} \, \text{m}^4 \).
  • Charge uniformément répartie, \( q \): 5 kN/m (kiloNewtons par mètre).
  • Charge ponctuelle, \( P \): 10 kN (kiloNewtons), appliquée au milieu de la poutre.
    Charges, contraintes et déformations

    Questions:

    1. Calculer la réaction aux appuis.
    2. Déterminer la position et la valeur de la contrainte maximale dans la poutre.
    3. Calculer la déformation maximale de la poutre.

      Remarques

      • Considérez que la poutre est dans un régime élastique linéaire, c’est-à-dire que la loi de Hooke est applicable.
      • Les calculs doivent tenir compte des unités correctes et de leur conversion si nécessaire.

      Correction : les charges, contraintes et déformations

      1. Calcul des réactions aux appuis

      Données :

      • Longueur de la poutre, \(L\): 6 mètres.
      • Charge uniformément répartie, \(q\): 5 kN/m.
      • Charge ponctuelle, \(P\): 10 kN, appliquée au milieu de la poutre.

      Réactions aux appuis :

      • La charge totale due à la distribution uniforme est

      \[q \times L = 5 \text{ kN/m} \times 6 \text{ m} = 30 \text{ kN}\]

      • La réaction aux appuis pour une poutre simplement appuyée sous une charge uniformément répartie et une charge ponctuelle appliquée au centre est équitablement répartie.

      Ainsi, avec \(P = 10 \text{ kN}\) ajouté, le total des charges est

      \[30 \text{ kN} + 10 \text{ kN} = 40 \text{ kN}\]

      • Les réactions aux appuis sont

      \[R_A = R_B = \frac{40 \text{ kN}}{2} = 20 \text{ kN}\]

      2. Calcul de la contrainte maximale

      Moment fléchissant maximal (\(M_{max}\)) :

      Le moment fléchissant maximal se produit sous la charge ponctuelle. On calcule ce moment par

      \[M_{max} = R_A \times \frac{L}{2} – \frac{1}{2} \times q \times \left(\frac{L}{2}\right)^2\]

      En substituant les valeurs :

      \[M_{max} = 20 \text{ kN} \times 3 \text{ m} – \frac{1}{2} \times 5 \text{ kN/m} \times (3 \text{ m})^2 \] \[M_{max} = 60 \text{ kN} \cdot \text{m} – 22.5 \text{ kN} \cdot \text{m} \] \[M_{max} = 37.5 \text{ kN} \cdot \text{m}\]

      Contrainte maximale (\(\sigma_{max}\)) :

      Pour calculer la contrainte maximale (\(\sigma_{max}\)) en laissant la hauteur de la section de la poutre comme une variable, nous utilisons l’équation de la contrainte dans une section en flexion :

      \[\sigma_{max} = \frac{M_{max} \cdot y}{I}\]

      où :

      • \(M_{max} = 37.5 \, \text{kN} \cdot \text{m}\) est le moment fléchissant maximal,
      • \(y\) est la distance de l’axe neutre à la fibre la plus éloignée, que nous considérons comme \(\frac{h}{2}\) avec \(h\) étant la hauteur de la section de la poutre,
      • \(I\) est le moment d’inertie de la section de la poutre, pour lequel l’expression standard pour un rectangle est \(\frac{1}{12}bh^3\), où \(b\) est la largeur de la section de la poutre. Puisque \(I\) est donné comme \(4 \times 10^{-6} \, \text{m}^4\), nous continuerons avec cette valeur directement.

      Substituons ces valeurs dans l’équation de la contrainte maximale :

      \[\sigma_{max} = \frac{37.5 \times 10^3 \cdot \frac{h}{2}}{4 \times 10^{-6}}\]

      Calculons \(\sigma_{max}\) en fonction de \(h\).

      La contrainte maximale (\(\sigma_{max}\)) en laissant la hauteur de la section de la poutre comme une variable \(h\) est :

      \[\sigma_{max} = 4687500000 \cdot h \, \text{Pa}\]

      Cela signifie que la contrainte maximale est proportionnelle à la distance \(y\) (demi-hauteur de la section de la poutre, ici simplifiée par \(h\)) et s’exprime en Pascals (Pa).

      Cette relation vous permet d’évaluer la contrainte maximale pour n’importe quelle valeur spécifique de \(h\), en gardant à l’esprit que \(h\) est la hauteur totale de la section de la poutre.

      3. Calcul de la déformation maximale

      Déformation due à la charge uniformément répartie (\(\delta_q\)) :

      \[\delta_q = \frac{5}{384} \times \frac{q \times L^4}{E \times I}\] \[ \delta_q = \frac{5}{384} \times \frac{5 \times 10^3 \times 6^4}{200 \times 10^9 \times 4 \times 10^{-6}} \] \[ \delta_q = 0.10547 \, \text{m} = 105.47 \, \text{mm} \]

      Déformation due à la charge ponctuelle (\(\delta_P\)) :

      \[\delta_P = \frac{P \times L^3}{48 \times E \times I} \] \[ \delta_P = \frac{10 \times 10^3 \times 6^3}{48 \times 200 \times 10^9 \times 4 \times 10^{-6}} \] \[ \delta_P = 0.05625 \, \text{m} = 56.25 \, \text{mm} \]

      Déformation totale (\(\delta_{total}\)) :

      La déformation totale est la somme des déformations dues à la charge uniformément répartie et à la charge ponctuelle :

      \[\delta_{total} = \delta_q + \delta_P \] \[\delta_{total} = 105.47 \text{ mm} + 56.25 \text{ mm} \] \[\delta_{total} = 161.72 \text{ mm}\]

      Charges, contraintes et déformations

      D’autres exercices de Rdm :

      Chers passionnés de génie civil,

      Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

      Cordialement, EGC – Génie Civil

      0 commentaires

      Soumettre un commentaire

      Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

      Calcul du Coefficient de Poisson

      Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

      Torsion d’une barre circulaire

      Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

      Contraintes et déformations en traction

      Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

      Calcul de la déformation élastique

      Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

      Calcul de la Déflexion Totale

      Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

      Tension maximale dans le tirant

      Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

      Calcul du Moment Fléchissant Maximal

      Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

      Traction et compression exercice corrigé

      Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

      Contrainte en un Point Spécifique d’une Poutre

      Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

      Application de la Méthode des Trois Moments

      Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...