Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre

Comprendre l’Analyse des Forces dans une Poutre

Vous êtes ingénieur civil et vous travaillez sur la conception d’une passerelle piétonne au-dessus d’un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement appuyée à ses deux extrémités.

La poutre doit supporter non seulement son propre poids, mais aussi le poids des piétons qui peuvent l’utiliser simultanément ainsi que celui des éléments de sécurité et de décoration.

Comprendre le Calcul l’effort tranchant et le moment, cliquez sur le lien.

Données de l’exercice:

  • Longueur de la poutre, \( L \): 20 mètres
  • Poids propre de la poutre (charge uniformément répartie), \( w \): 300 N/m
  • Charge due aux piétons (modélisée comme une charge uniformément répartie supplémentaire), \( w_p \): 500 N/m
  • Poids des éléments de sécurité et décoration (considérés comme des charges ponctuelles à divers points), répartis comme suit:

– \( P_1 \): 1000 N au point situé à 5 m du support gauche

– \( P_2 \): 1500 N au point situé à 12 m du support gauche

– \( P_3 \): 500 N au point situé à 18 m du support gauche

    Analyse des Forces dans une Poutre

    Questions:

    1. Calcul des réactions d’appui :

    • Déterminez les réactions aux appuis \( R_A \) et \( R_B \).

    2. Diagramme des moments fléchissants :

    • Tracez le diagramme des moments fléchissants pour la poutre.
    • Identifiez le point où le moment fléchissant est maximal.

    3. Diagramme des forces tranchantes :

    • Tracez le diagramme des forces tranchantes pour la poutre.
    • Identifiez les points où la force tranchante change de signe.

    Correction : Analyse des Forces dans une Poutre

    1. Calcul des réactions d’appui \(R_A\) et \(R_B\)

    Équilibre vertical (Somme des forces verticales = 0):

    \[ R_A + R_B = w \times L + w_p \times L + P_1 + P_2 + P_3 \] \[ R_A + R_B = 300 \times 20 + 500 \times 20 + 1000 + 1500 + 500 \] \[ R_A + R_B = 6000 + 10000 + 3000 = 19000 \, \text{N} \]

    Équilibre des moments autour de l’appui gauche (Somme des moments = 0):

    \[ R_B \times L = w \times \frac{L}{2} \times L + w_p \times \frac{L}{2} \times L + P_1 \times 5 + P_2 \times 12 + P_3 \times 18 \] \[ R_B \times 20 = 300 \times 10 \times 20 + 500 \times 10 \times 20 + 1000 \times 5 + 1500 \times 12 + 500 \times 18 \] \[ R_B \times 20 = 60000 + 100000 + 5000 + 18000 + 9000 = 194000 \, \text{Nm} \] \[ R_B = 9700 \, \text{N} \] \[ R_A = 19000 – 9700 \] \[ R_A = 9300 \, \text{N} \]

    2. Diagramme des moments fléchissants

    Calcul des moments à des points clés:

    • Au point A (0 m):

    \[ M_A = 0 \, \text{Nm} \]

    • Au point juste avant \(P_1\) (5 m):

    \[ M_{5^-} = R_A \times 5 – w \times 5 \times \frac{5}{2} – w_p \times 5 \times \frac{5}{2} \] \[ M_{5^-} = 9300 \times 5 – 300 \times 2.5 \times 5 – 500 \times 2.5 \times 5 \] \[ M_{5^-} = 36500 \, \text{Nm} \]

    • Au point juste après \(P_1\) (5 m):

    \[ M_5^+ = M_5^- – P_1 \times 0 = 36500 \text{ Nm} \]

    (pas de changement immédiat après charge ponctuelle sans distance)

    • Au point juste avant \(P_2\) (12 m):

    \[ M_{12^-} = R_A \times 12 – w \times 12 \times \frac{12}{2} – w_p \times 12 \times \frac{12}{2} – P_1 \times (12 – 5) \] \[ M_{12^-} = 9300 \times 12 – 300 \times 6 \times 12 – 500 \times 6 \times 12 – 1000 \times 7 \] \[ M_{12^-} = 48000 \, \text{Nm} \]

    • Au point juste après \(P_2\) (12 m):

    \[ M_{12} + = M_{12}^- – P_2 \times 0 = 48000 \, \text{Nm} \]

    (pas de changement immédiat après charge ponctuelle sans distance)

    Au point juste avant \(P_3\) (18 m):

    \[ M_{18^-} = R_A \times 18 – w \times 18 \times \frac{18}{2} – w_p \times 18 \times \frac{18}{2} – P_1 \times (18 – 5) – P_2 \times (18 – 12) \] \[ M_{18^-} = 9300 \times 18 – 300 \times 9 \times 18 – 500 \times 9 \times 18 – 1000 \times 13 – 1500 \times 6 \] \[ M_{18^-} = 24800 \, \text{Nm} \]

    • Au point B (20 m):

    \[ M_B = 0 \, \text{Nm} \]

    Analyse des Forces dans une Poutre

    3. Diagramme des forces tranchantes

    • Au point A (0 m):

    \[ V_A = R_A = 9300\, \text{N} \]

    • Au point juste avant \(P_1\) (5 m):

    \[ V_{5-} = R_A – (w + w_p) \times 5 \] \[ V_{5-} = 9300 – 800 \times 5 \] \[ V_{5-} = 5300\, \text{N} \]

    • Juste après \(P_1\) (5 m):

    \[ V_{5+} = V_{5-} – P_1 \] \[ V_{5+} = 5300 – 1000 \] \[ V_{5+} = 4300\, \text{N} \]

    • Au point juste avant \(P_2\) (12 m):

    \[ V_{12-} = V_{5+} – (w + w_p) \times (12 – 5) \] \[ V_{12-} = 4300 – 800 \times 7 \] \[ V_{12-} = -1300\, \text{N} \]

    (signe négatif indique un changement de direction)

    • Juste après \(P_2\) (12 m):

    \[ V_{12+} = V_{12-} – P_2 \] \[ V_{12+} = -1300 – 1500 \] \[ V_{12+} = -2800\, \text{N} \]

    • Au point juste avant \(P_3\) (18 m):

    \[ V_{18-} = V_{12+} – (w + w_p) \times (18 – 12) \] \[ V_{18-} = -2800 – 800 \times 6 \] \[ V_{18-} = -7600\, \text{N} \]

    • Juste après \(P_3\) (18 m):

    \[ V_{18+} = V_{18-} – P_3 \] \[ V_{18+} = -7600 – 500 \] \[ V_{18+} = -8100\, \text{N} \]

    • Au point B (20 m):

    \[ V_B = V_{18+} + R_B \] \[ V_B = -8100 + 9700 \] \[ V_B = 1600\, \text{N} \]

    Analyse des Forces dans une Poutre

    Analyse des Forces dans une Poutre

    D’autres exercices de Rdm:

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Calcul du Coefficient de Poisson

    Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

    Torsion d’une barre circulaire

    Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

    Contraintes et déformations en traction

    Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

    Calcul de la déformation élastique

    Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

    Calcul de la Déflexion Totale

    Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

    Tension maximale dans le tirant

    Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

    Calcul du Moment Fléchissant Maximal

    Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

    Traction et compression exercice corrigé

    Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

    Contrainte en un Point Spécifique d’une Poutre

    Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

    Application de la Méthode des Trois Moments

    Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...