Analyse des Forces dans une Poutre

Analyse des Forces dans une Poutre

Comprendre l’Analyse des Forces dans une Poutre

Vous êtes ingénieur civil et vous travaillez sur la conception d’une passerelle piétonne au-dessus d’un petit ruisseau. La passerelle est soutenue par une poutre en acier simplement appuyée à ses deux extrémités.

La poutre doit supporter non seulement son propre poids, mais aussi le poids des piétons qui peuvent l’utiliser simultanément ainsi que celui des éléments de sécurité et de décoration.

Comprendre le Calcul l’effort tranchant et le moment, cliquez sur le lien.

Données de l’exercice:

  • Longueur de la poutre, \( L \): 20 mètres
  • Poids propre de la poutre (charge uniformément répartie), \( w \): 300 N/m
  • Charge due aux piétons (modélisée comme une charge uniformément répartie supplémentaire), \( w_p \): 500 N/m
  • Poids des éléments de sécurité et décoration (considérés comme des charges ponctuelles à divers points), répartis comme suit:

– \( P_1 \): 1000 N au point situé à 5 m du support gauche

– \( P_2 \): 1500 N au point situé à 12 m du support gauche

– \( P_3 \): 500 N au point situé à 18 m du support gauche

    Analyse des Forces dans une Poutre

    Questions:

    1. Calcul des réactions d’appui :

    • Déterminez les réactions aux appuis \( R_A \) et \( R_B \).

    2. Diagramme des moments fléchissants :

    • Tracez le diagramme des moments fléchissants pour la poutre.
    • Identifiez le point où le moment fléchissant est maximal.

    3. Diagramme des forces tranchantes :

    • Tracez le diagramme des forces tranchantes pour la poutre.
    • Identifiez les points où la force tranchante change de signe.

    Correction : Analyse des Forces dans une Poutre

    1. Calcul des réactions d’appui \(R_A\) et \(R_B\)

    Équilibre vertical (Somme des forces verticales = 0):

    \[ R_A + R_B = w \times L + w_p \times L + P_1 + P_2 + P_3 \] \[ R_A + R_B = 300 \times 20 + 500 \times 20 + 1000 + 1500 + 500 \] \[ R_A + R_B = 6000 + 10000 + 3000 = 19000 \, \text{N} \]

    Équilibre des moments autour de l’appui gauche (Somme des moments = 0):

    \[ R_B \times L = w \times \frac{L}{2} \times L + w_p \times \frac{L}{2} \times L + P_1 \times 5 + P_2 \times 12 + P_3 \times 18 \] \[ R_B \times 20 = 300 \times 10 \times 20 + 500 \times 10 \times 20 + 1000 \times 5 + 1500 \times 12 + 500 \times 18 \] \[ R_B \times 20 = 60000 + 100000 + 5000 + 18000 + 9000 = 194000 \, \text{Nm} \] \[ R_B = 9700 \, \text{N} \] \[ R_A = 19000 – 9700 \] \[ R_A = 9300 \, \text{N} \]

    2. Diagramme des moments fléchissants

    Calcul des moments à des points clés:

    • Au point A (0 m):

    \[ M_A = 0 \, \text{Nm} \]

    • Au point juste avant \(P_1\) (5 m):

    \[ M_{5^-} = R_A \times 5 – w \times 5 \times \frac{5}{2} – w_p \times 5 \times \frac{5}{2} \] \[ M_{5^-} = 9300 \times 5 – 300 \times 2.5 \times 5 – 500 \times 2.5 \times 5 \] \[ M_{5^-} = 36500 \, \text{Nm} \]

    • Au point juste après \(P_1\) (5 m):

    \[ M_5^+ = M_5^- – P_1 \times 0 = 36500 \text{ Nm} \]

    (pas de changement immédiat après charge ponctuelle sans distance)

    • Au point juste avant \(P_2\) (12 m):

    \[ M_{12^-} = R_A \times 12 – w \times 12 \times \frac{12}{2} – w_p \times 12 \times \frac{12}{2} – P_1 \times (12 – 5) \] \[ M_{12^-} = 9300 \times 12 – 300 \times 6 \times 12 – 500 \times 6 \times 12 – 1000 \times 7 \] \[ M_{12^-} = 48000 \, \text{Nm} \]

    • Au point juste après \(P_2\) (12 m):

    \[ M_{12} + = M_{12}^- – P_2 \times 0 = 48000 \, \text{Nm} \]

    (pas de changement immédiat après charge ponctuelle sans distance)

    Au point juste avant \(P_3\) (18 m):

    \[ M_{18^-} = R_A \times 18 – w \times 18 \times \frac{18}{2} – w_p \times 18 \times \frac{18}{2} – P_1 \times (18 – 5) – P_2 \times (18 – 12) \] \[ M_{18^-} = 9300 \times 18 – 300 \times 9 \times 18 – 500 \times 9 \times 18 – 1000 \times 13 – 1500 \times 6 \] \[ M_{18^-} = 24800 \, \text{Nm} \]

    • Au point B (20 m):

    \[ M_B = 0 \, \text{Nm} \]

    Analyse des Forces dans une Poutre

    3. Diagramme des forces tranchantes

    • Au point A (0 m):

    \[ V_A = R_A = 9300\, \text{N} \]

    • Au point juste avant \(P_1\) (5 m):

    \[ V_{5-} = R_A – (w + w_p) \times 5 \] \[ V_{5-} = 9300 – 800 \times 5 \] \[ V_{5-} = 5300\, \text{N} \]

    • Juste après \(P_1\) (5 m):

    \[ V_{5+} = V_{5-} – P_1 \] \[ V_{5+} = 5300 – 1000 \] \[ V_{5+} = 4300\, \text{N} \]

    • Au point juste avant \(P_2\) (12 m):

    \[ V_{12-} = V_{5+} – (w + w_p) \times (12 – 5) \] \[ V_{12-} = 4300 – 800 \times 7 \] \[ V_{12-} = -1300\, \text{N} \]

    (signe négatif indique un changement de direction)

    • Juste après \(P_2\) (12 m):

    \[ V_{12+} = V_{12-} – P_2 \] \[ V_{12+} = -1300 – 1500 \] \[ V_{12+} = -2800\, \text{N} \]

    • Au point juste avant \(P_3\) (18 m):

    \[ V_{18-} = V_{12+} – (w + w_p) \times (18 – 12) \] \[ V_{18-} = -2800 – 800 \times 6 \] \[ V_{18-} = -7600\, \text{N} \]

    • Juste après \(P_3\) (18 m):

    \[ V_{18+} = V_{18-} – P_3 \] \[ V_{18+} = -7600 – 500 \] \[ V_{18+} = -8100\, \text{N} \]

    • Au point B (20 m):

    \[ V_B = V_{18+} + R_B \] \[ V_B = -8100 + 9700 \] \[ V_B = 1600\, \text{N} \]

    Analyse des Forces dans une Poutre

    Analyse des Forces dans une Poutre

    D’autres exercices de Rdm:

    Chers passionnés de génie civil,

    Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

    Cordialement, EGC – Génie Civil

    0 commentaires

    Soumettre un commentaire

    Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

    Calcul de la contrainte de flexion

    Calcul de la contrainte de flexion Comprendre le Calcul de la contrainte de flexion Un ingénieur en génie civil doit concevoir une poutre en acier pour soutenir un plancher dans un bâtiment commercial. La poutre doit supporter une charge uniformément répartie...

    Déformation de Différentes Sections Transversales

    Déformation de Différentes Sections Transversales Comprendre la Déformation de Différentes Sections Transversales Un projet de construction d'un petit pont piétonnier en milieu urbain. Ce pont doit supporter à la fois son propre poids et la charge des piétons. Nous...

    Propriétés mécaniques des matériaux

    Propriétés Mécaniques des Matériaux Contexte sur les propriétés mécaniques des matériaux Vous êtes un ingénieur travaillant sur la conception d'une poutre pour un petit pont. La poutre est faite d'un acier standard, et elle doit supporter une charge uniformément...

    Cercle de Mohr : Exercice – Corrigé

    Cercle de Mohr : Exercice - Corrigé Contexte de calcul Une poutre est soumise à des contraintes plane. À un certain point de cette poutre, les contraintes normales sur les faces horizontales et verticales sont \( \sigma_x = 8 \text{ MPa} \) et \( \sigma_y = 4 \text{...

    Réactions d’Appui et Efforts Internes

    Réactions d'Appui et Efforts Internes Comprendre les Réactions d'Appui et Efforts Internes Considérons une poutre encastrée-libre d'une longueur L = 6 m. La poutre est soumise à une charge uniformément répartie q = 2 kN/m sur toute sa longueur, ainsi qu'à une charge...

    Calculer la variation de longueur des poutres

    Calculer la variation de longueur des poutres Comprendre comment Calculer la variation de longueur des poutres Considérons une passerelle métallique utilisée pour le passage piétonnier au-dessus d'une voie ferrée. La passerelle est soutenue par deux poutres en acier...

    Charge Critique de Flambement

    Charge Critique de Flambement Comprendre la Charge Critique de Flambement Dans une entreprise de construction, un ingénieur doit concevoir une colonne verticale légère qui supportera une charge axiale. La colonne est en acier avec un module d'élasticité E de 200 GPa....

    Torsion dans une Poutre en T

    Torsion dans une Poutre en T Comprendre la Torsion dans une Poutre en T Vous êtes un ingénieur en structure chargé de concevoir un élément de support en forme de T pour une installation industrielle. Cette poutre en T sera soumise à un moment de torsion dû aux...

    Méthode des Nœuds pour un Treillis

    Méthode des Nœuds pour un Treillis Comprendre la Méthode des Nœuds pour un Treillis Considérons un treillis plan en forme de triangle, composé de trois nœuds et trois éléments (barres). Le treillis est fixé au sol à l'un de ses nœuds (nœud A) et est supporté par un...

    Calcul de la torsion d’un poteau

    Calcul de la torsion d'un poteau Comprendre le Calcul de la torsion d'un poteau Un ingénieur en génie civil doit concevoir un poteau de soutien pour un pont. Ce poteau doit être capable de résister à des moments de torsion générés par les forces du vent et les charges...