Capacité Portante et Tassement des Sols

Capacité Portante et Tassement des Sols

Comprendre la Capacité Portante et Tassement des Sols

Un projet de construction d’un immeuble de grande hauteur est en cours dans une zone urbaine. L’étude géotechnique du site a révélé la présence de différentes couches de sols.

Pour comprendre la Capacité Portante d’une Semelle Isolée, cliquez sur lien.

Le site est constitué de trois couches de sol distinctes :

  • La première couche est de l’argile molle d’une épaisseur de 3 mètres.
  • La deuxième couche est un sable fin saturé d’une épaisseur de 5 mètres.
  • La troisième couche est un limon dense d’une épaisseur de 6 mètres.

L’immeuble repose sur des fondations superficielles de type semelle isolée. On cherche à vérifier la capacité portante de la fondation et le tassement prévu sous une charge donnée.

Données :

  1. Propriétés des sols :
    • Argile molle :
      • Poids volumique (γ) = 18 kN/m³
      • Cohésion (c) = 20 kPa
      • Angle de frottement interne (φ) = 0°
      • Module de compressibilité (Mv) = 0.5 m²/MN
    • Sable fin saturé :
      • Poids volumique (γ) = 20 kN/m³
      • Cohésion (c) = 0 kPa
      • Angle de frottement interne (φ) = 30°
      • Module de compressibilité (Mv) = 1.2 m²/MN
    • Limon dense :
      • Poids volumique (γ) = 22 kN/m³
      • Cohésion (c) = 15 kPa
      • Angle de frottement interne (φ) = 28°
      • Module de compressibilité (Mv) = 0.8 m²/MN
  2. Dimensions de la semelle :
    • Largeur (B) = 2.5 mètres
    • Longueur (L) = 2.5 mètres
    • Profondeur d’installation (D) = 1.5 mètres
  3. Charges :
    • Charge verticale appliquée (Q) = 1200 kN
Capacité Portante et Tassement des Sols

Questions :

1. Calcul de la capacité portante de la fondation :

Utilisez la formule de Terzaghi pour les fondations superficielles afin de déterminer la capacité portante ultime (qu) de la semelle.

2. Calcul du tassement de la fondation :

Estimez le tassement de la fondation en utilisant la méthode de la consolidation pour chaque couche de sol.

Correction : Capacité Portante et Tassement des Sols

1. Calcul de la capacité portante de la fondation

La formule de Terzaghi pour la capacité portante ultime (\(q_u\)) est :

\[ q_u = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \]

Propriétés des sols et facteurs de capacité portante:

  • Argile molle (φ = 0°) :
    • Nc = 5.7, Nq = 1, Nγ = 0
    • γ = 18 kN/m³, c = 20 kPa
  • Sable fin (φ = 30°) :
    • Nc = 30.1, Nq = 18.4, Nγ = 15.1
    • γ = 20 kN/m³, c = 0 kPa
  • Limon dense (φ = 28°) :
    • Nc = 25.1, Nq = 16.3, Nγ = 12.5
    • γ = 22 kN/m³, c = 15 kPa

Calcul pour chaque couche:

  • Argile molle :

\[ q_{u, \text{argile}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{argile}} = 20 \cdot 5.7 + 18 \cdot 1.5 \cdot 1 + 0.5 \cdot 18 \cdot 2.5 \cdot 0 \] \[ q_{u, \text{argile}} = 114 + 27 + 0 \] \[ q_{u, \text{argile}} = 141\, \text{kPa} \]

  • Sable fin :

\[ q_{u, \text{sable}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{sable}} = 0 \cdot 30.1 + 20 \cdot 1.5 \cdot 18.4 + 0.5 \cdot 20 \cdot 2.5 \cdot 15.1 \] \[ q_{u, \text{sable}} = 0 + 552 + 377.5 \] \[ q_{u, \text{sable}} = 929.5\, \text{kPa} \]

  • Limon dense :

\[ q_{u, \text{limon}} = c \cdot N_c + \gamma \cdot D \cdot N_q + 0.5 \cdot \gamma \cdot B \cdot N_\gamma \] \[ q_{u, \text{limon}} = 15 \cdot 25.1 + 22 \cdot 1.5 \cdot 16.3 + 0.5 \cdot 22 \cdot 2.5 \cdot 12.5 \] \[ q_{u, \text{limon}} = 376.5 + 537.9 + 343.75 \] \[ q_{u, \text{limon}} = 1258.15\, \text{kPa} \]

Capacité portante ultime critique:

La capacité portante ultime la plus basse est celle de l’argile molle :

\[ q_{u, \text{critique}} = 141\, \text{kPa} \]

2. Calcul du tassement de la fondation

La formule de tassement primaire (S) est :

\[ S = \frac{\Delta \sigma}{M_v} \cdot H \]

Augmentation de contrainte (\(\Delta \sigma\)) sous la fondation

Pour une charge appliquée (Q) de 1200 kN et une surface de semelle (A) de 2.5 m x 2.5 m :

\[ \Delta \sigma = \frac{Q}{A} \] \[ \Delta \sigma = \frac{1200}{2.5 \times 2.5} \] \[
\Delta \sigma = 192 \, \text{kPa} \]

Tassement pour chaque couche:

  • Argile molle :

\[ S_{\text{argile}} = \frac{\Delta \sigma}{M_v \text{argile}} \cdot H_{\text{argile}} \] \[ S_{\text{argile}} = \frac{192}{0.5} \cdot 3 \] \[ S_{\text{argile}} = 384 \cdot 3 \] \[ S_{\text{argile}} = 1152 \, \text{mm} \]

  • Sable fin :

\[ S_{\text{sable}} = \frac{\Delta \sigma}{M_v \text{sable}} \cdot H_{\text{sable}} \] \[ S_{\text{sable}} = \frac{192}{1.2} \cdot 5 \] \[ S_{\text{sable}} = 160 \cdot 5 \] \[ S_{\text{sable}} = 800 \, \text{mm} \]

  • Limon dense :

\[ S_{\text{limon}} = \frac{\Delta \sigma}{M_v \text{limon}} \cdot H_{\text{limon}} \] \[ S_{\text{limon}} = \frac{192}{0.8} \cdot 6 \] \[ S_{\text{limon}} = 240 \cdot 6 \] \[ S_{\text{limon}} = 1440 \, \text{mm} \]

Tassement total:

\[ S_{\text{total}} = S_{\text{argile}} + S_{\text{sable}} + S_{\text{limon}} \] \[ S_{\text{total}} = 1152 + 800 + 1440 \] \[ S_{\text{total}} = 3392 \, \text{mm} \]

Conclusion:

  • Capacité portante critique de la semelle est 141 kPa (dictée par l’argile molle).
  • Tassement total estimé de la fondation est 3392 mm.

Des mesures de consolidation et d’amélioration du sol peuvent être nécessaires pour assurer la stabilité et la viabilité du projet de construction.

Capacité Portante et Tassement des Sols

D’autres exercices de géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Tassement selon la Méthode de Terzaghi

Tassement selon la Méthode de Terzaghi Comprendre le calcul de Tassement selon la Méthode de Terzaghi Une couche d'argile saturée de 3 mètres d'épaisseur est située sous un remblai de 6 mètres de hauteur. La densité du remblai est de 1.8 g/cm³. Les propriétés de...

Résistance au Cisaillement d’un Sol

Résistance au Cisaillement d'un Sol Comprendre la Résistance au Cisaillement d'un Sol  Vous êtes un ingénieur en géotechnique chargé d'évaluer la capacité portante d'un terrain pour la construction d'une petite structure. Pour ce faire, vous décidez de réaliser un...

Combinaison des charges en fondation

Combinaison des charges en fondation Comprendre la combinaison des charges en fondation Vous êtes ingénieur en génie civil et vous devez concevoir la fondation d'un petit bâtiment de bureau. Le bâtiment est prévu pour avoir une empreinte rectangulaire de 15 m x 10 m....

Vérification du Non-Poinçonnement du Sol

Vérification du Non-Poinçonnement du Sol Comprendre la Vérification du Non-Poinçonnement du Sol  Une entreprise de construction a été mandatée pour concevoir une fondation pour une nouvelle tour résidentielle dans le centre-ville de Lyon. Le terrain de construction...

Calcul de la Profondeur d’une Semelle

Calcul de la Profondeur d'une Semelle Comprendre le Calcul de la Profondeur d'une Semelle Dans le cadre de la construction d'un bâtiment résidentiel, un ingénieur géotechnique doit concevoir les fondations d'une semelle rectangulaire. La semelle doit supporter une...

Calcul de la contrainte ultime sur une semelle

Calcul de la contrainte ultime sur une semelle Comprendre le Calcul de la contrainte ultime sur une semelle Dans le cadre d'un projet de construction d'un bâtiment résidentiel, il est nécessaire de concevoir les fondations qui supporteront les charges de la structure....

Calcul de la poussée des terres sur un mur

Calcul de la poussée des terres sur un mur Comprendre le Calcul de la poussée des terres sur un mur Dans un projet de construction urbaine, un mur de soutènement est nécessaire pour supporter les terres d’un terrain en pente, permettant ainsi de créer un espace plat...

Calcul de l’Angle de Talus dans Différents Sols

Calcul de l'Angle de Talus dans Différents Sols Comprendre le Calcul de l'Angle de Talus dans Différents Sols Vous êtes ingénieur civil travaillant sur un projet de construction d'une route qui doit traverser une zone vallonnée. Pour préparer le terrain, il est...

Préparation d’un Site pour Banches

Préparation d'un Site pour Banches Comprendre la Préparation d'un Site pour Banches Vous êtes l'ingénieur en charge d'un chantier où un mur de soutènement en béton doit être construit. Pour cela, il est nécessaire de préparer l'emplacement des banches utilisées pour...

Calcul des Pressions au Sol pour un Bâtiment

Calcul des Pressions au Sol pour un Bâtiment Comprendre le Calcul des Pressions au Sol pour un Bâtiment Dans le cadre de la construction d'un nouveau bâtiment commercial, une évaluation géotechnique est nécessaire pour déterminer si le sol sur le site peut supporter...