Calcul du Module d’Élasticité d’une Poutre

Calcul du Module d’Élasticité d’une Poutre

Comprendre le Calcul du Module d’Élasticité d’une Poutre

Vous êtes ingénieur(e) dans une entreprise spécialisée dans la conception de structures métalliques.

Un nouveau projet nécessite la conception d’une poutre en acier qui supportera une charge uniformément répartie.

Pour garantir la sécurité et l’efficacité de la conception, vous devez calculer le module d’élasticité de l’acier utilisé, afin de vérifier sa conformité avec les spécifications du projet.

Pour comprendre le Calcul d’une poutre en acier, cliquez sur le lien.

Données:

  • Matériau de la poutre: acier
  • Longueur de la poutre (L): 3 mètres
  • Charge uniformément répartie (q): 2000 N/m
  • Flèche maximale admissible (f_max): 10 mm
  • Moment d’inertie de la section transversale de la poutre (I): \(4 \times 10^{-6} m^4\)
  • Distance entre les appuis (a): 3 mètres

Consignes:

1. Calculer la réaction aux appuis

2. Déterminer le moment fléchissant maximal (\(M_{\text{max}}\))

3. Calculer le module d’élasticité (\(E\))

Correction : Calcul du Module d’Élasticité d’une Poutre

1. Calcul des réactions aux appuis

Pour une charge uniformément répartie, la réaction aux appuis est égale à la moitié de la charge totale appliquée à la poutre. La charge totale Q est le produit de la charge par unité de longueur q et la longueur de la poutre L.

\[Q = q \times L\]

La réaction aux appuis est donc donnée par:

\[R = \frac{Q}{2} = \frac{q \times L}{2}\]

En substituant les valeurs données :

  • \(q = 2000\, \text{N/m}\)
  • \(L = 3\, \text{m}\)

\[R = \frac{2000 \times 3}{2} \] \[R = 3000\, \text{N}\]

Chaque appui supporte une réaction de 3000 N.

2. Détermination du moment fléchissant maximal (\(M_{\text{max}}\))

Le moment fléchissant maximal pour une poutre supportant une charge uniformément répartie se produit au centre de la poutre.

\[M_{\text{max}} = \frac{q \times L^2}{8}\]

En substituant les valeurs données :

\[M_{\text{max}} = \frac{2000 \times (3)^2}{8} \] \[M_{\text{max}} = \frac{2000 \times 9}{8} \] \[M_{\text{max}} = 2250\, \text{Nm}\]

3. Calcul du module d’élasticité (\(E\))

Le module d’élasticité est calculé en réarrangeant la formule de la flèche pour une charge uniformément répartie et en résolvant pour \(E\).

\[f = \frac{5 \times q \times L^4}{384 \times E \times I}\]

En réarrangeant pour \(E\) :

\[E = \frac{5 \times q \times L^4}{384 \times f \times I}\]

Substituons les valeurs fournies :

  • \(f_{\text{max}} = 10\, \text{mm} = 0.01\, \text{m}\) (conversion en mètres pour garder la cohérence des unités)
  • \(I = 4 \times 10^{-6}\, \text{m}^4\)

\[E = \frac{5 \times 2000 \times (3)^4}{384 \times 0.01 \times 4 \times 10^{-6}}\]

Calculons ce résultat :

\[E = \frac{5 \times 2000 \times 81}{384 \times 0.01 \times 4 \times 10^{-6}}\] \[E = \frac{810000}{0.01536}\] \[E = \frac{810000}{0.01536 \times 4 \times 10^{-6}}\] \[E = \frac{810000}{0.00006144}\] \[E = 13183673469.1\, \text{Pa}\] \[E \approx 132\, \text{GPa}\]

Ainsi, le module d’élasticité \(E\) de l’acier utilisé pour cette poutre est d’environ 132 GPa, ce qui est une valeur raisonnable pour l’acier, indiquant que l’exercice a été résolu correctement. Cette valeur est conforme aux propriétés typiques de l’acier, qui varient généralement entre 200 et 210 GPa. L’écart peut être attribué à l’approximation ou au type spécifique d’acier considéré.

Calcul du Module d'Élasticité d'une Poutre

Calcul du Module d’Élasticité d’une Poutre

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Moment Quadratique d’une Poutre

Calcul du Moment Quadratique d'une Poutre Comprendre le Calcul du Moment Quadratique d'une Poutre Une entreprise de construction doit installer une poutre en acier pour soutenir une partie du toit d'un petit entrepôt. La poutre, de forme rectangulaire, est positionnée...

Calcul du Rayon de Giration

Calcul du Rayon de Giration Comprendre le Calcul du Rayon de Giration Dans le cadre de la conception d'un pont piétonnier, il est essentiel d'analyser la stabilité des piliers en acier qui soutiendront le tablier. Le calcul du rayon de giration des sections...

Caractéristiques Géométriques de Sections

Caractéristiques Géométriques de Sections Comprendre le calcul des Caractéristiques Géométriques de Sections Dans le cadre de la conception d'une poutre pour un pont piétonnier, il est nécessaire de déterminer les caractéristiques géométriques de la section...

Calcul du Centre de Gravité d’une Poutre

Calcul du Centre de Gravité d'une Poutre Comprendre le Calcul du Centre de Gravité d'une Poutre Dans le cadre de la conception d'une structure métallique légère pour une nouvelle installation sportive, un ingénieur doit déterminer le centre de gravité d'une poutre en...

Calcul de la Flèche en Mi-Travée d’une Poutre

Calcul de la Flèche en Mi-Travée d'une Poutre Comprendre le Calcul de la Flèche en Mi-Travée d'une Poutre Une poutre en acier, simplement appuyée aux deux extrémités, est soumise à une charge uniformément répartie. L'objectif est de calculer la flèche maximale à...

Calcul de l’effort tranchant dans une poutre

Calcul de l'effort tranchant dans une poutre Comprendre le Calcul de l'effort tranchant dans une poutre Vous êtes un ingénieur en charge de la conception d'un pont destiné à un trafic léger dans une zone urbaine. Vous devez vérifier la capacité d'une poutre du pont à...

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Calcul du Facteur de Sécurité

Calcul du Facteur de Sécurité d’une Poutre Comprendre le calcul du facteur de sécurité d'une poutre Vous êtes ingénieur en structure et devez vérifier la sécurité d'une poutre en acier dans une construction. Le but de cet exercice est de déterminer le facteur de...

Déformation Axiale Due à la Température

Déformation Axiale Due à la Température Comprendre la Déformation Axiale Due à la Température Un ingénieur civil doit concevoir un pylône de transmission électrique qui traverse une région soumise à des variations de température extrêmes. Le pylône est constitué d'une...

Contrainte et Raccourcissement dans une Poutre

Contrainte et Raccourcissement dans une Poutre Comprendre la Contrainte et Raccourcissement dans une Poutre Vous êtes ingénieur dans une entreprise de construction et vous devez analyser l'intégrité structurelle d'une poutre utilisée dans la construction d'un pont. La...