Études de cas pratique

EGC

Évaluation de l’Indice de Vide sous Charge

Évaluation de l’Indice de Vide sous Charge

Comprendre l’Évaluation de l’Indice de Vide sous Charge

Vous êtes un ingénieur géotechnique travaillant sur le site de construction d’un futur immeuble de bureaux.

Le terrain sur lequel l’immeuble sera construit est composé d’une couche de sable fin sous-jacente à une couche d’argile.

Avant de débuter la construction, il est essentiel de comprendre le comportement du sol sous charge, notamment l’indice de vide des différentes couches de sol en réponse à des déformations.

Cela permettra de concevoir des fondations adéquates pour l’immeuble.

Pour comprendre le Calcul l’indice des vides final, cliquez sur le lien.

Données:

Nous considérerons que des essais de chargement ont été réalisés sur des échantillons de sol prélevés à différentes profondeurs.

Les résultats des essais sont les suivants :

1. Échantillon de sable fin (à 2 m de profondeur) :

  • Poids spécifique des solides (Gs) = 2,65
  • Humidité initiale (w) = 15%
  • Déformation sous charge de 100 kPa = 10%

2. Échantillon d’argile (à 5 m de profondeur) :

  • Poids spécifique des solides (Gs) = 2,70
  • Humidité initiale (w) = 25%
  • Déformation sous charge de 100 kPa = 20%

La gravité spécifique de l’eau (Gw) est de 1,0 (ce qui est standard), et le volume initial des échantillons (V0) est de 1 m³.

Questions:

1. Calcul de l’indice de vide initial (\(e_0\)) pour chaque échantillon

2. Calcul de l’indice de vide après déformation (\(e_f\)) :

  • Considérez que la déformation (\(\frac{\Delta h}{h_0}\)) est égale à la variation de l’indice de vide (\(\Delta e\)).
  • Ainsi, \( e_f = e_0 – \Delta e \), où \(\Delta e\) est la déformation donnée (10% pour le sable et 20% pour l’argile).

3. Analyse:

  • Discutez de l’effet de la charge sur l’indice de vide pour les deux types de sol.
  • Expliquez comment ces résultats peuvent influencer la conception des fondations pour l’immeuble de bureaux.

Correction : Évaluation de l’Indice de Vide sous Charge

1. Calcul de l’indice de vide initial (\(e_0\)) pour chaque échantillon

L’indice de vide initial se calcule avec la formule :
\[ e_0 = \frac{G_s \cdot w}{G_w} \]

où \(G_s\) est le poids spécifique des solides, \(w\) est l’humidité (en fraction décimale), et \(G_w\) est la gravité spécifique de l’eau, qui est 1,0 par définition.

Pour l’échantillon de sable fin :

  • \( G_s = 2,65 \)
  • \( w = 15\% = 0,15 \) (conversion en fraction décimale)
  • \( G_w = 1,0 \)

\[ e_0 = \frac{2,65 \cdot 0,15}{1,0} = 0,3975 \]

Pour l’échantillon d’argile :

  • \( G_s = 2,70 \)
  • \( w = 25\% = 0,25 \)
  • \( G_w = 1,0 \)

\[ e_0 = \frac{2,70 \cdot 0,25}{1,0} = 0,675 \]

2. Calcul de l’indice de vide après déformation (\(e_f\))

La déformation est donnée en pourcentage de réduction de hauteur. Pour cet exercice, nous assumons que cette déformation est équivalente à la variation de l’indice de vide \(\Delta e\)

Pour l’échantillon de sable fin :

  • Déformation sous charge = 10%
  • \( e_0 = 0,3975 \)
  • \( \Delta e = 10\% = 0,1 \) (conversion en fraction décimale)

\[ e_f = e_0 – \Delta e \] \[ e_f = 0,3975 – 0,1 \] \[ e_f = 0,2975 \]

Pour l’échantillon d’argile :

  • Déformation sous charge = 20%
  • \( e_0 = 0,675 \)
  • \( \Delta e = 20\% = 0,2 \)

\[ e_f = e_0 – \Delta e \] \[ e_f = 0,675 – 0,2 \] \[ e_f = 0,475 \]

3. Analyse

Les résultats montrent une diminution notable de l’indice de vide pour les deux échantillons sous une charge de 100 kPa, ce qui indique une compaction du sol sous cette charge.

Pour le sable fin, l’indice de vide diminue de 0,1, tandis que pour l’argile, la diminution est de 0,2, ce qui est logique compte tenu de la nature plus compressible de l’argile par rapport au sable.

Implications pour la conception des fondations :

  • Sable fin :

La faible variation de l’indice de vide indique une bonne capacité de charge et une faible compressibilité, ce qui est favorable pour la construction des fondations, nécessitant potentiellement moins de mesures d’amélioration du sol.

  • Argile :

La plus grande réduction de l’indice de vide souligne une plus grande compressibilité et une moindre capacité de charge, ce qui nécessite une attention particulière dans la conception des fondations. Des techniques d’amélioration du sol ou des fondations profondes pourraient être nécessaires pour assurer la stabilité de l’immeuble de bureaux.

Évaluation de l’Indice de Vide sous Charge

D’autres exercices de Géotechnique:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du gradient hydraulique critique

Calcul du gradient hydraulique critique Comprendre le Calcul du gradient hydraulique critique Vous êtes un ingénieur géotechnique travaillant sur la conception d'un barrage en terre. Le barrage est prévu pour être construit sur un sol argileux avec des couches de...

Analyse et Interprétation de la Courbe Proctor

Analyse et Interprétation de la Courbe Proctor Comprendre l'analyse et Interprétation de la Courbe Proctor Vous êtes un ingénieur civil travaillant sur un projet de construction de route. Pour assurer la stabilité de la route, vous devez déterminer la densité maximale...

Étude de la Montée Capillaire dans les Fondations

Étude de la Montée Capillaire dans les Fondations Comprendre l'Étude de la Montée Capillaire dans les Fondations Dans un projet de construction de fondations pour un nouveau bâtiment résidentiel, une étude de sol révèle la présence de couches de sol avec des...

Calcul de la Pression de Fondation sur argile

Calcul de la Pression de Fondation sur argile Comprendre le Calcul de la Pression de Fondation sur argile Dans le cadre de la construction d'un bâtiment de cinq étages sur un terrain argileux, un ingénieur géotechnique doit calculer la pression de fondation que le sol...

Calcul de la Contrainte Verticale Effective

Calcul de la Contrainte Verticale Effective Comprendre le Calcul de la Contrainte Verticale Effective Dans une région sujette à des développements urbains importants, un ingénieur en géotechnique doit évaluer la stabilité du sol sur lequel sera construit un complexe...

Calcul de Tassement d’un Dallage en Remblai

Calcul de Tassement d’un Dallage en Remblai Comprendre le Calcul de Tassement d’un Dallage en Remblai Vous êtes ingénieur géotechnicien et devez concevoir un projet de construction d'un nouvel entrepôt. L'entrepôt doit être construit sur un terrain comportant un...

Vérifier la capacité portante d’un sol

Vérifier la capacité portante d'un sol Comprendre comment vérifier la capacité portante d'un sol Vous êtes ingénieur en géotechnique et devez évaluer la capacité portante d'un terrain pour la construction d'un bâtiment résidentiel. Le bâtiment aura une fondation...

Choix de types de fondation

Choix de types de fondation Comprendre le choix de types de fondation : Vous êtes ingénieur en génie civil et devez décider du type de fondation le plus adapté pour un nouveau bâtiment. Ce bâtiment sera construit dans une région où les conditions du sol et les charges...

Calcul de la contrainte ultime sur une semelle

Calcul de la contrainte ultime sur une semelle Comprendre le Calcul de la contrainte ultime sur une semelle Dans le cadre d'un projet de construction d'un bâtiment résidentiel, il est nécessaire de concevoir les fondations qui supporteront les charges de la structure....

Calcul l’indice des vides final

Calcul l'indice des vides final Comprendre le calcul l'indice des vides final Vous travaillez sur un projet de construction d'une route dans une région à sol argileux. Avant de commencer la construction, il est essentiel de comprendre les propriétés du sol, notamment...