Critère de Rupture de Von Mises

Critère de Rupture de Von Mises

Comprendre le critère de Rupture de Von Mises

Vous êtes ingénieur en génie civil et travaillez sur la conception d’une poutre en acier qui fera partie d’une structure de pont.

Cette poutre sera soumise à divers types de charges et contraintes en service. Pour garantir la sécurité et la durabilité de la structure, vous devez vérifier que la poutre respecte le critère de rupture de Von Mises.

Pour comprendre le Calcul des déformations dans une poutre, cliquez sur le lien.

Données :

  • Matériau de la poutre: Acier avec une limite d’élasticité de 250 MPa.
  • La poutre est soumise à un état de contrainte triaxial avec les contraintes principales suivantes :
    • σ1 = 60 MPa (tension)
    • σ2 = -30 MPa (compression)
    • σ3 = 40 MPa (tension)
  • La poutre subit également une contrainte de cisaillement τxy = 20 MPa.
critère de Rupture de Von Mises

Question :

1. Calculez la contrainte équivalente de Von Mises pour la poutre.

2. Déterminez si la poutre répond aux critères de sécurité selon le critère de rupture de Von Mises.

3. Commentez sur la marge de sécurité de la conception.

Correction : critère de Rupture de Von Mises

1. Calcul de la Contrainte de Von Mises

La contrainte de Von Mises (\(\sigma_{\text{vM}}\)) est calculée en utilisant l’expression:

\( \sigma_{\text{vM}} = \sqrt{\frac{1}{2} \left[ (\sigma_1 – \sigma_2)^2 + (\sigma_2 – \sigma_3)^2 + (\sigma_1 – \sigma_3)^2 \right] + 3\tau_{xy}^2 } \)

En insérant les valeurs données :

\( \sigma_{\text{vM}} = \sqrt{\frac{1}{2} \left[ (60 – (-30))^2 + ((-30) – 40)^2 + (60 – 40)^2 \right] + 3(20)^2 } \)

\( \sigma_{\text{vM}} = \sqrt{\frac{1}{2} \left[ 90^2 + (-70)^2 + 20^2 \right] + 3(400) } \) \[ \sigma_{\text{vM}} = \sqrt{7900} \] \[ \sigma_{\text{vM}} \approx 88.88 \, \text{MPa} \]

2. Vérification du Critère de Sécurité

Le critère de Von Mises stipule que la structure est sûre tant que la contrainte équivalente est inférieure à la limite d’élasticité du matériau.

Comparons \(\sigma_{\text{vM}}\) à la limite d’élasticité :

\[ 88.88 \, \text{MPa} < 250 \, \text{MPa} \]

La contrainte équivalente de Von Mises est bien inférieure à la limite d’élasticité de l’acier, donc la poutre respecte le critère de rupture de Von Mises.

3. Marge de Sécurité

La marge de sécurité est le rapport entre la limite d’élasticité et la contrainte équivalente :

  • Marge de sécurité

\[ = \frac{250 \, \text{MPa}}{88.88 \, \text{MPa}}
\]
\[
\text{Marge de sécurité} \approx 2.81
\]

Une marge de sécurité de 2.81 signifie que la poutre peut supporter des contraintes environ 2.81 fois supérieures aux contraintes actuelles avant d’atteindre la limite d’élasticité.

Cette marge indique une conception sûre sous les conditions données.

Conclusion

La poutre en acier, sous les contraintes données, respecte le critère de rupture de Von Mises et possède une marge de sécurité suffisante, ce qui indique une conception adéquate pour les conditions de charge spécifiées.

Cette analyse est cruciale pour garantir la sécurité et la durabilité de la structure dans le cadre du génie civil.

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Coefficient de Poisson

Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

Torsion d’une barre circulaire

Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

Contraintes et déformations en traction

Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

Calcul de la déformation élastique

Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

Calcul de la Déflexion Totale

Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Traction et compression exercice corrigé

Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

Contrainte en un Point Spécifique d’une Poutre

Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

Application de la Méthode des Trois Moments

Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...