Calcul du Module de Young du Titane

Calcul du Module de Young du Titane

Comprendre le Calcul du Module de Young du Titane

Lors d’expériences de traction en laboratoire, qui permettent de caractériser les propriétés mécaniques des matériaux, des barres en aluminium et en titane sont testées.

Ces essais consistent à appliquer une force axiale sur une éprouvette jusqu’à ce qu’une déformation élastique soit observée.

L’objectif est de comparer la réponse élastique de deux matériaux différents sous une même charge pour en déduire des propriétés mécaniques.

Pour comprendre la Détermination du Module d’Young, cliquez sur le lien.

Données:

  • Essai nº1 : Barre en alliage d’aluminium
    • Module d’Young de l’aluminium (): 70 GPa
    • Longueur de la barre : 324 mm
    • Section carrée : 6 mm de côté
    • Allongement observé sous charge : 1.8 mm
  • Essai nº2 : Barre en titane
    • Longueur de la barre : 308 mm
    • Section rectangulaire : 4 mm × 7 mm
    • Allongement observé sous charge : 1.4 mm

Questions:

  1. Quelle est la déformation subie par la barre en aluminium?
  2. Quelle est la déformation subie par la barre en titane?
  3. Sachant que la même force de traction est appliquée aux deux barres et que le module d’Young de l’aluminium est connu, comment calculer le module d’Young du titane à partir de ces données?

Correction : Calcul du Module de Young du Titane

1. Calcul de la Déformation de la Barre en Aluminium

  • Longueur initiale (\(L_{0_{\text{Al}}}\)): 324 mm
  • Allongement (\(\Delta L_{\text{Al}}\)): 1.8 mm

La déformation (\(\varepsilon_{\text{Al}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Al}} = \frac{\Delta L_{\text{Al}}}{L_{0_{\text{Al}}}} \] \[ \varepsilon_{\text{Al}} = \frac{1.8\, \text{mm}}{324\, \text{mm}} \]

La deformation de la barre en Aluminium est d’environ 0.005556 

2. Calcul de la Déformation de la Barre en Titane

  • Longueur initiale LTi: 308 mm
  • Allongement (\(\Delta L_{\text{Ti}}\)): 1.4 mm

La déformation (\(\varepsilon_{\text{Ti}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Ti}} = \frac{\Delta L_{\text{Ti}}}{L_{0_{\text{Ti}}}} \] \[ \varepsilon_{\text{Ti}} = \frac{1.4\, \text{mm}}{308\, \text{mm}} \]

La deformation de la barre en Titane est d’environ 0.004545

3. Calcul du Module de Young du Titane

Nous avons le module de Young de l’aluminium (\(E_{\text{Al}}\)) et nous supposons que la même force est appliquée aux deux barres, donc la contrainte (\(\sigma\)) est la même pour les deux. D’après la loi de Hooke :

\[\sigma = E \cdot \varepsilon\]

Pour l’aluminium, nous avons :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = \sigma\]

Pour le titane, avec la même contrainte, nous avons :

\[E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}} = \sigma\]

Comme la contrainte est la même pour les deux matériaux, nous pouvons établir l’équation :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}}\]

En isolant \(E_{\text{Ti}}\), nous obtenons :

\[E_{\text{Ti}} = \frac{E_{\text{Al}} \cdot \varepsilon_{\text{Al}}}{\varepsilon_{\text{Ti}}}\]

Nous remplaçons par les valeurs numériques et calculons le résultat :

\[E_{\text{Ti}} = \frac{70 \times 10^9 \, \text{Pa} \cdot \frac{1.8}{324}}{\frac{1.4}{308}}\]

Résultats:

En effectuant les calculs, nous trouvons que le module de Young du titane (\(E_{\text{Ti}}\)) est d’environ 85.56 GPa.

Conclusion:

Le module de Young du titane, basé sur les essais de traction menés et la comparaison avec les propriétés connues de l’aluminium, est d’environ 85.56 GPa.

Cela indique la rigidité du titane sous une charge élastique dans les conditions de l’essai.

Calcul du Module de Young du Titane

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Coefficient de Poisson

Calcul du Coefficient de Poisson Comprendre le calcul du Coefficient de Poisson Vous travaillez avec un échantillon d'aluminium dont le module d'Young est de 70 GPa. L'échantillon est soumis à un essai de traction où il subit un allongement axial et un rétrécissement...

Torsion d’une barre circulaire

Torsion d'une barre circulaire Comprendre la torsion d'une barre circulaire Dans le cadre de la conception des ponts suspendus, en tant qu'ingénieur en génie civil, il est crucial de comprendre les forces auxquelles les composants critiques sont soumis. Le câble...

Contraintes et déformations en traction

Contraintes et déformations en traction Comprendre le calcul des contraintes et déformations en traction : Une barre métallique cylindrique est soumise à une force de traction. Les caractéristiques de la barre et les forces appliquées sont les suivantes : Diamètre...

Calcul de la déformation élastique

Calcul de la Déformation Élastique Comprendre le calcul de la déformation élastique Une barre cylindrique en acier, utilisée dans une construction, doit être évaluée pour sa déformation élastique sous une force spécifique. Pour comprendre le Comportement d’un Matériau...

Calcul de la Déflexion Totale

Calcul de la Déflexion Totale Comprendre le calcul de la Déflexion Totale Contexte et Données : Une poutre horizontale uniforme de longueur L = 6 mètres, de module d'élasticité E = 200 GPa et de moment d'inertie \(I = 300 \times 10^{-6}\) m\(^4\). La poutre est...

Tension maximale dans le tirant

Tension maximale dans le tirant Comprendre le calcul de la tension maximale dans le tirant  Vous êtes un ingénieur en génie civil travaillant sur la conception d'un pont suspendu. Un des éléments clés de votre conception est le tirant qui soutient le tablier du pont....

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Traction et compression exercice corrigé

Traction et Compression exercice corrigé Contexte : Traction et compression Un ingénieur civil conçoit une structure qui comprend une poutre en acier. Cette poutre doit résister à des forces de traction et de compression dues à diverses charges et contraintes. Pour...

Contrainte en un Point Spécifique d’une Poutre

Contrainte en un Point Spécifique d'une Poutre Comprendre la Contrainte en un Point Spécifique d'une Poutre Un ingénieur en génie civil est chargé de concevoir une poutre en acier qui doit supporter des charges spécifiques dans un bâtiment commercial. La poutre est...

Application de la Méthode des Trois Moments

Application de la Méthode des Trois Moments Comprendre l'Application de la Méthode des Trois Moments On considère une poutre continue en béton armé reposant sur trois appuis simples (A, B, C). Cette poutre supporte à la fois des charges uniformément réparties et des...