Calcul du Module de Young du Titane

Calcul du Module de Young du Titane

Comprendre le Calcul du Module de Young du Titane

Lors d’expériences de traction en laboratoire, qui permettent de caractériser les propriétés mécaniques des matériaux, des barres en aluminium et en titane sont testées.

Ces essais consistent à appliquer une force axiale sur une éprouvette jusqu’à ce qu’une déformation élastique soit observée.

L’objectif est de comparer la réponse élastique de deux matériaux différents sous une même charge pour en déduire des propriétés mécaniques.

Pour comprendre la Détermination du Module d’Young, cliquez sur le lien.

Données:

  • Essai nº1 : Barre en alliage d’aluminium
    • Module d’Young de l’aluminium (): 70 GPa
    • Longueur de la barre : 324 mm
    • Section carrée : 6 mm de côté
    • Allongement observé sous charge : 1.8 mm
  • Essai nº2 : Barre en titane
    • Longueur de la barre : 308 mm
    • Section rectangulaire : 4 mm × 7 mm
    • Allongement observé sous charge : 1.4 mm

Questions:

  1. Quelle est la déformation subie par la barre en aluminium?
  2. Quelle est la déformation subie par la barre en titane?
  3. Sachant que la même force de traction est appliquée aux deux barres et que le module d’Young de l’aluminium est connu, comment calculer le module d’Young du titane à partir de ces données?

Correction : Calcul du Module de Young du Titane

1. Calcul de la Déformation de la Barre en Aluminium

  • Longueur initiale (\(L_{0_{\text{Al}}}\)): 324 mm
  • Allongement (\(\Delta L_{\text{Al}}\)): 1.8 mm

La déformation (\(\varepsilon_{\text{Al}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Al}} = \frac{\Delta L_{\text{Al}}}{L_{0_{\text{Al}}}} \] \[ \varepsilon_{\text{Al}} = \frac{1.8\, \text{mm}}{324\, \text{mm}} \]

La deformation de la barre en Aluminium est d’environ 0.005556 

2. Calcul de la Déformation de la Barre en Titane

  • Longueur initiale LTi: 308 mm
  • Allongement (\(\Delta L_{\text{Ti}}\)): 1.4 mm

La déformation (\(\varepsilon_{\text{Ti}}\)) est calculée comme suit:

\[ \varepsilon_{\text{Ti}} = \frac{\Delta L_{\text{Ti}}}{L_{0_{\text{Ti}}}} \] \[ \varepsilon_{\text{Ti}} = \frac{1.4\, \text{mm}}{308\, \text{mm}} \]

La deformation de la barre en Titane est d’environ 0.004545

3. Calcul du Module de Young du Titane

Nous avons le module de Young de l’aluminium (\(E_{\text{Al}}\)) et nous supposons que la même force est appliquée aux deux barres, donc la contrainte (\(\sigma\)) est la même pour les deux. D’après la loi de Hooke :

\[\sigma = E \cdot \varepsilon\]

Pour l’aluminium, nous avons :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = \sigma\]

Pour le titane, avec la même contrainte, nous avons :

\[E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}} = \sigma\]

Comme la contrainte est la même pour les deux matériaux, nous pouvons établir l’équation :

\[E_{\text{Al}} \cdot \varepsilon_{\text{Al}} = E_{\text{Ti}} \cdot \varepsilon_{\text{Ti}}\]

En isolant \(E_{\text{Ti}}\), nous obtenons :

\[E_{\text{Ti}} = \frac{E_{\text{Al}} \cdot \varepsilon_{\text{Al}}}{\varepsilon_{\text{Ti}}}\]

Nous remplaçons par les valeurs numériques et calculons le résultat :

\[E_{\text{Ti}} = \frac{70 \times 10^9 \, \text{Pa} \cdot \frac{1.8}{324}}{\frac{1.4}{308}}\]

Résultats:

En effectuant les calculs, nous trouvons que le module de Young du titane (\(E_{\text{Ti}}\)) est d’environ 85.56 GPa.

Conclusion:

Le module de Young du titane, basé sur les essais de traction menés et la comparaison avec les propriétés connues de l’aluminium, est d’environ 85.56 GPa.

Cela indique la rigidité du titane sous une charge élastique dans les conditions de l’essai.

Calcul du Module de Young du Titane

D’autres exercices de Rdm:

Chers passionnés de génie civil,

Nous nous efforçons constamment d’améliorer la qualité et l’exactitude de nos exercices sur notre site. Si vous remarquez une erreur mathématique, ou si vous avez des retours à partager, n’hésitez pas à nous en informer. Votre aide est précieuse pour perfectionner nos ressources. Merci de contribuer à notre communauté !

Cordialement, EGC – Génie Civil

0 commentaires

Soumettre un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Calcul du Moment Quadratique d’une Poutre

Calcul du Moment Quadratique d'une Poutre Comprendre le Calcul du Moment Quadratique d'une Poutre Une entreprise de construction doit installer une poutre en acier pour soutenir une partie du toit d'un petit entrepôt. La poutre, de forme rectangulaire, est positionnée...

Calcul du Rayon de Giration

Calcul du Rayon de Giration Comprendre le Calcul du Rayon de Giration Dans le cadre de la conception d'un pont piétonnier, il est essentiel d'analyser la stabilité des piliers en acier qui soutiendront le tablier. Le calcul du rayon de giration des sections...

Caractéristiques Géométriques de Sections

Caractéristiques Géométriques de Sections Comprendre le calcul des Caractéristiques Géométriques de Sections Dans le cadre de la conception d'une poutre pour un pont piétonnier, il est nécessaire de déterminer les caractéristiques géométriques de la section...

Calcul du Centre de Gravité d’une Poutre

Calcul du Centre de Gravité d'une Poutre Comprendre le Calcul du Centre de Gravité d'une Poutre Dans le cadre de la conception d'une structure métallique légère pour une nouvelle installation sportive, un ingénieur doit déterminer le centre de gravité d'une poutre en...

Calcul de la Flèche en Mi-Travée d’une Poutre

Calcul de la Flèche en Mi-Travée d'une Poutre Comprendre le Calcul de la Flèche en Mi-Travée d'une Poutre Une poutre en acier, simplement appuyée aux deux extrémités, est soumise à une charge uniformément répartie. L'objectif est de calculer la flèche maximale à...

Calcul de l’effort tranchant dans une poutre

Calcul de l'effort tranchant dans une poutre Comprendre le Calcul de l'effort tranchant dans une poutre Vous êtes un ingénieur en charge de la conception d'un pont destiné à un trafic léger dans une zone urbaine. Vous devez vérifier la capacité d'une poutre du pont à...

Calcul du Moment Fléchissant Maximal

Calcul du Moment Fléchissant Maximal Comprendre le Calcul du Moment Fléchissant Maximal Considérez une poutre en acier de longueur \(L = 6\) mètres, avec une extrémité encastrée et l'autre extrémité libre. Cette poutre est soumise à une charge uniformément répartie de...

Calcul du Facteur de Sécurité

Calcul du Facteur de Sécurité d’une Poutre Comprendre le calcul du facteur de sécurité d'une poutre Vous êtes ingénieur en structure et devez vérifier la sécurité d'une poutre en acier dans une construction. Le but de cet exercice est de déterminer le facteur de...

Déformation Axiale Due à la Température

Déformation Axiale Due à la Température Comprendre la Déformation Axiale Due à la Température Un ingénieur civil doit concevoir un pylône de transmission électrique qui traverse une région soumise à des variations de température extrêmes. Le pylône est constitué d'une...

Contrainte et Raccourcissement dans une Poutre

Contrainte et Raccourcissement dans une Poutre Comprendre la Contrainte et Raccourcissement dans une Poutre Vous êtes ingénieur dans une entreprise de construction et vous devez analyser l'intégrité structurelle d'une poutre utilisée dans la construction d'un pont. La...